

2010 Service Manual

40, 50, 60, 65, 75, 90 HP

BRP US Inc. Technical Publications 250 Sea Horse Drive Waukegan, Illinois 60085 United States

- † AMP, Superseal 1.5, Super Seal, Power Timer, and Pro-Crimper II are registered trademarks of Tyco International, Ltd.
- † Amphenol is a registered trademark of The Amphenol Corporation.
- † BEP is a registered trademark of Actuant Corporation.
- † Champion is a registered trademark of Federal-Mogul Corporation.
- † Deutsch is a registered trademark of The Deutsch Company.
- † Dexron is a registered trademark of The General Motors Corporation.
- † Fluke is a registered trademark of The Fluke Corporation
- † GE is a registered trademark of The General Electric Company.
- † GM is a registered trademark of The General Motors Corporation.
- † Locquic and Loctite are registered trademarks of The Henkel Group.
- † Lubriplate is a registered trademark of Fiske Brothers Refining Company.
- † NMEA is a registered trademark of the National Marine Electronics Association.
- † Oetiker is a registered trademark of Hans Oetiker AG Maschinen.
- † Packard is a registered trademark of Delphi Automotive Systems.
- † Permatex is a registered trademark of Permatex.
- † STP is a registered trademark of STP Products Company.
- † Snap-on is a registered trademark of Snap-on Technologies, Inc.

The following trademarks are the property of BRP US Inc. or its affiliates:

Evinrude [®] Twist Grip™

Johnson [®] Nut Lock™

Evinrude [®] E-TEC [®] Screw Lock™

FasTrak $^{\text{TM}}$ Ultra Lock $^{\text{TM}}$ S.A.F.E. $^{\text{TM}}$ Moly Lube $^{\text{TM}}$

SystemCheck™ Triple-Guard® Grease

I-Command™ DPL™ Lubricant

Evinrude [®] ICON[™] 2+4 [®] Fuel Conditioner
Evinrude [®] / Johnson [®] XD30[™] Outboard Oil Carbon Guard[™]

Evinrude ® / Johnson ® XD30™ Outboard Oil

Evinrude ® / Johnson ® XD50™ Outboard Oil

Carbon Guard™

HPF XR™ Gearcase Lubricant

Evinrude ® / Johnson ® XD100™ Outboard Oil HPF PRO™ Gearcase Lubricant

Gel-Seal II™

TABLE OF CONTENTS

SECTION	PAGE
INTRODUCTION	3
1 SPECIAL TOOLS	15
2 INSTALLATION AND PREDELIVERY	27
3 MAINTENANCE	79
4 ENGINE COVER SERVICE	95
5 ENGINE MANAGEMENT MODULE (EMM)	99
6 SYSTEM ANALYSIS	
7 ELECTRICAL AND IGNITION	131
8 FUEL SYSTEM	165
9 OILING SYSTEM	193
10 COOLING SYSTEM	211
11 POWERHEAD	223
12 MIDSECTION	271
13 GEARCASE	327
GEARCASE SERVICE, 40 – 65 HP MODELS	332
GEARCASE SERVICE, 75 – 90 HP MODELS	354
14 TRIM AND TILT	379
15 MANUAL STARTER	397
SAFETY	S–1
INDEX	I–1
TROUBLE CHECK CHART	T–1
DIAGRAMS	

INTRODUCTION

CONTENTS

ABBREVIATIONS USED IN THIS MANUAL	6
UNITS OF MEASUREMENT	6
LIST OF ABBREVIATIONS	6
EMISSION-RELATED INSTALLATION INSTRUCTIONS	7
MANUFACTURER'S RESPONSIBILITY	7
DEALER'S RESPONSIBILITY	7
OWNER'S RESPONSIBILITY	7
EPA EMISSION REGULATIONS	
MODEL DESIGNATION	8
MODELS COVERED IN THIS MANUAL	9
SERVICE SPECIFICATIONS	_10
STANDARD TORQUE SPECIFICATIONS	_
PRODUCT REFERENCE AND ILLUSTRATIONS	

SAFETY INFORMATION

Before working on any part of the outboard, read the SAFETY section at the end of this manual.

This publication is written for qualified, factory-trained technicians who are already familiar with the use of *Evinrude/Johnson* Special Tools. The included information is not a substitute for work experience. It is an organized guide for reference, repair, and/or maintenance.

The following symbols and/or signal words may be used in this document:

DANGER

Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

Indicates a hazardous situation which, if not avoided, could result in death or serious injury

CAUTION

Indicates a hazardous situation which, if not avoided, could result in minor or moderate personal injury.

NOTICE Indicates an instruction which, if not followed, could severely damage engine components or other property.

These safety alert signal words mean:

ATTENTION!
BECOME ALERT!
YOUR SAFETY IS INVOLVED!

IMPORTANT: Identifies information that controls correct assembly and operation of the product.

DO NOT perform any work until you have read and understood these instructions completely.

Torque wrench tightening specifications must strictly be adhered to.

Should removal of any locking fastener (lock tabs, locknuts, or patch screws) be required, always replace with a new one.

When replacement parts are required, use *Evinrude/Johnson Genuine Parts* or parts with equivalent characteristics, including type, strength and material. Use of substandard parts could result in injury or product malfunction.

Always wear EYE PROTECTION AND APPROPRIATE GLOVES when using power tools.

Unless otherwise specified, engine must be OFF when performing this work.

Always be aware of parts that can move, such as flywheels, propellers, etc.

Some components may be HOT. Always wait for engine to cool down before performing work.

If you use procedures or service tools that are not recommended in this manual, YOU ALONE must decide if your actions might injure people or damage the outboard.

This document may be translated into other languages. In the event of any discrepancy, the English version shall prevail.

A

DANGER

Contact with a rotating propeller is likely to result in serious injury or death. Assure the engine and prop area is clear of people and objects before starting engine or operating boat. Do not allow anyone near a propeller, even when the engine is off. Blades can be sharp and the propeller can continue to turn even after the engine is off. Remove propeller before servicing and when running the outboard on a flushing device.

DO NOT run the engine indoors or without adequate ventilation or permit exhaust fumes to accumulate in confined areas. Engine exhaust contains carbon monoxide which, if inhaled, can cause serious brain damage or death.

A

WARNING

Wear safety glasses to avoid personal injury, and set compressed air to less than 25 psi (172 kPa).

The motor cover and flywheel cover are machinery guards. Use caution when conducting tests on running outboards. DO NOT wear jewelry or loose clothing. Keep hair, hands, and clothing away from rotating parts.

During service, the outboard may drop unexpectedly. Avoid personal injury; always support the outboard's weight with a suitable hoist or the tilt support bracket during service.

To prevent accidental starting while servicing, disconnect the battery cables at the battery. Twist and remove all spark plug leads.

The electrical system presents a serious shock hazard. DO NOT handle primary or secondary ignition components while outboard is running or flywheel is turning.

Gasoline is extremely flammable and highly explosive under certain conditions. Use caution when working on any part of the fuel system.

Protect against hazardous fuel spray. Before starting any fuel system service, carefully relieve fuel system pressure.

Do not smoke, or allow open flames or sparks, or use electrical devices such as cellular phones in the vicinity of a fuel leak or while fueling.

Keep all electrical connections clean, tight, and insulated to prevent shorting or arcing and causing an explosion.

Always work in a well ventilated area.

Replace any locking fastener (locknut or patch screw) if its locking feature becomes weak. Definite resistance to tightening must be felt when reusing a locking fastener. If replacement is indicated, use only authorized replacement or equivalent.

ABBREVIATIONS USED IN THIS MANUAL

Units of Measurement

Α	Amperes
amp-hr	Ampere hour
fl. oz.	fluid ounce
ft. lbs.	foot pounds
HP	horsepower
in.	inch
in. Hg	inches of mercury
in. lbs.	inch pounds
kPa	kilopascals
ml	milliliter
mm	millimeter
N·m	Newton meter
P/N	part number
psi	pounds per square inch
RPM	revolutions per minute
°C	degrees Celsius
°F	degrees Fahrenheit
ms	milliseconds
μs	microseconds
Ω	Ohms
V	Volts
VAC	Volts Alternating Current
VDC	Volts Direct Current

List of Abbreviations

ABYC	American Boat & Yacht Council
ATDC	after top dead center
AT	air temperature sensor
BPS	barometric pressure sensor
BTDC	before top dead center
CCA	cold cranking amps
CFR	Code of Federal Regulations
CPS	crankshaft position sensor
EMM	Engine Management Module
EPA	Environmental Protection Agency
ICOMIA	International Council of Marine
	Industry Associations
ID	Inside dimension
MCA	marine cranking amps
MWS	modular wiring system
NMEA	National Marine Electronics Assoc.
ROM	read only memory
S.A.F.E.	speed adjusting failsafe electronics
SAC	start assist circuit
SAE	Society of Automotive Engineers
SYNC	synchronization
TDC	top dead center
TPS	throttle position sensor
USCG	United States Coast Guard
WOT	wide open throttle
WTS	water temperature sensor

EMISSION-RELATED INSTALLATION INSTRUCTIONS

Failing to follow these instructions when installing a certified engine in a vessel violates federal law (40 CFR 1068.105 (b)), subject to fines or other penalties as described in the Clean Air Act.

Maintenance, replacement, or repair of the emission control devices and systems may be performed by any marine SI (spark ignition) engine repair establishment or individual.

Manufacturer's Responsibility

Beginning with 1999 model year outboards, manufacturers of marine outboards must determine the exhaust emission levels for each outboard horsepower family and certify these outboards with the United States of America Environmental Protection Agency (EPA). An emissions control information label, showing emission levels and outboard specifications, must be placed on each outboard at the time of manufacture.

Dealer's Responsibility

When performing service on all 1999 and more recent *Evinrude/Johnson* outboards that carry an emissions control information label, adjustments must be kept within published factory specifications.

Replacement or repair of any emission related component must be executed in a manner that maintains emission levels within the prescribed certification standards.

Dealers are not to modify the outboard in any manner that would alter the horsepower or allow emission levels to exceed their predetermined factory specifications.

Exceptions include manufacturer's prescribed changes, such as altitude adjustments, for example.

Owner's Responsibility

The owner/operator is required to have outboard maintenance performed to maintain emission levels within prescribed certification standards.

The owner/operator is not to, and should not allow anyone to, modify the outboard in any manner that would alter the horsepower or allow emissions levels to exceed their predetermined factory specifications.

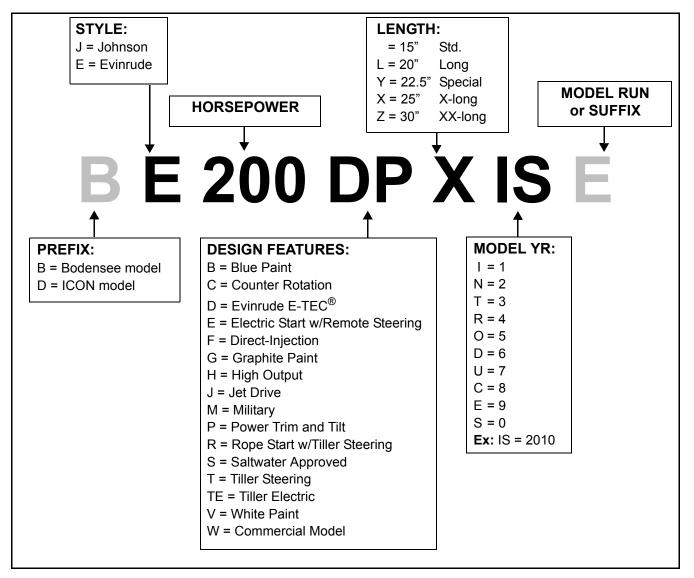
Tampering with the fuel system to change horsepower or modify emission levels beyond factory settings or specifications will void the product warranty.

EPA Emission Regulations

All new 1999 and more recent Evinrude/Johnson outboards are certified to the EPA as conforming to the requirements of the regulations for the control of air pollution from new watercraft marine spark ignition outboards. This certification is contingent on certain adjustments being set to factory standards. For this reason, the factory procedure for servicing the product must be strictly followed and, whenever practical, returned to the original intent of the design. The responsibilities listed above are general and in no way a complete listing of the rules and regulations pertaining to the EPA requirements on exhaust emissions for marine products. For more detailed information on this subject, you may contact the following locations:

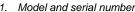
VIA U.S. POSTAL SERVICE:

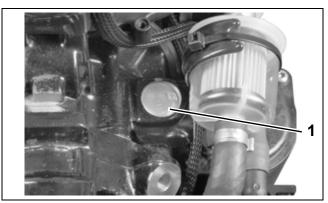
Office of Mobile Sources Engine Programs and Compliance Division Engine Compliance Programs Group (6403J) 401 M St. NW Washington, DC 20460


VIA EXPRESS or COURIER MAIL:

Office of Mobile Sources
Engine Programs and Compliance Division
Engine Compliance Programs Group (6403J)
501 3rd St. NW
Washington, DC 20001

EPA INTERNET WEB SITE:


www.epa.gov


MODEL DESIGNATION

Model and serial numbers are located on the swivel bracket and on the powerhead.

Serial number

002225

MODELS COVERED IN THIS MANUAL

This manual covers service information on all 52.7 cubic inch (.86 L), 2-Cylinder; and 79 cubic inch (1.29 L), 3-Cylinder *Evinrude E-TEC* models.

Model	Displacement	Gearcase	Height	Color	Description
E40DRLISD	.86 L	12:32 / 0.375 F	20"	Blue	Manual Tilt, Tiller Steering, Rope Start
E40DRLISF	.86 L	12:32 / 0.375 F	20"	Blue	Manual Tilt, Tiller Steering, Rope Start
E40DTLISR	.86 L	12:32 / 0.375 F	20"	Blue	Power Tilt, Tiller Steering, Electric Start
E40DTLISF	.86 L	12:32 / 0.375 F	20"	Blue	Power Tilt, Tiller Steering, Electric Start
E40DPLISD	.86 L	12:32 / 0.375 F	20"	Blue	Power Tilt, Remote Steering, Electric Start
E40DPLISF	.86 L	12:32 / 0.375 F	20"	Blue	Power Tilt, Remote Steering, Electric Start
E40DSLISR	.86 L	12:32 / 0.375 F	20"	White	Power Tilt, Remote Steering, Electric Start
E40DSLISF	.86 L	12:32 / 0.375 F	20"	White	Power Tilt, Remote Steering, Electric Start
E50DTLISR	.86 L	12:32 / 0.375 F	20"	Blue	Power Tilt, Tiller Steering, Electric Start
E50DTLISF	.86 L	12:32 / 0.375 F	20"	Blue	Power Tilt, Tiller Steering, Electric Start
E50DPLISD	.86 L	12:32 / 0.375 F	20"	Blue	Power Tilt, Remote Steering, Electric Start
E50DPLISF	.86 L	12:32 / 0.375 F	20"	Blue	Power Tilt, Remote Steering, Electric Start
E50DSLISR	.86 L	12:32 / 0.375 F	20"	White	Power Tilt, Remote Steering, Electric Start
E50DSLISF	.86 L	12:32 / 0.375 F	20"	White	Power Tilt, Remote Steering, Electric Start
E60DTLISR	.86 L	12:32 / 0.375 F	20"	Blue	Power Tilt, Tiller Steering, Electric Start
E60DTLISF	.86 L	12:32 / 0.375 F	20"	Blue	Power Tilt, Tiller Steering, Electric Start
E60DPLISD	.86 L	12:32 / 0.375 F	20"	Blue	Power Tilt, Remote Steering, Electric Start
E60DPLISF	.86 L	12:32 / 0.375 F	20"	Blue	Power Tilt, Remote Steering, Electric Start
E60DSLISR	.86 L	12:32 / 0.375 F	20"	White	Power Tilt, Remote Steering, Electric Start
E60DSLISF	.86 L	12:32 / 0.375 F	20" 20"	White	Power Tilt, Remote Steering, Electric Start
E65WDRLISR	.86 L .86 L	12:32 / 0.375 F	20"	Blue Blue	Manual Tilt, Tiller Steering, Rope Start
E65WDRLISF E65WDRYISR	.86 L	12:32 / 0.375 F 12:32 / 0.375 F	22.5"	Blue	Manual Tilt, Tiller Steering, Rope Start Manual Tilt, Tiller Steering, Rope Start
E65WDRYISF	.86 L	12:32 / 0.375 F	22.5"	Blue	Manual Tilt, Tiller Steering, Rope Start
E75DPLISD	1.29 L	13:26 / 0.50 S	20"	Blue	Power Tilt, Steel Steering Arm
E75DPLISE	1.29 L 1.29 L	13:26 / 0.50 S	20"	Blue	Power Tilt, Steel Steering Arm
E75DSLISR	1.29 L	13:26 / 0.50 S	20"	White	Power Tilt, Stainless Steering Arm
E75DSLISF	1.29 L	13:26 / 0.50 S	20"	White	Power Tilt, Stainless Steering Arm
			20"		-
E90DPLISD	1.29 L	13:26 / 0.50 S		Blue	Power Tilt, Steel Steering Arm
E90DPLISF	1.29 L	13:26 / 0.50 S	20"	Blue	Power Tilt, Steel Steering Arm
E90DSLISE	1.29 L	13:26 / 0.50 S	20"	White	Power Tilt, Stainless Steering Arm
E90DSLISF	1.29 L	13:26 / 0.50 S	20"	White	Power Tilt, Stainless Steering Arm
E90DPXISD	1.29 L	12:27 / 0.444 O	25"	White	Power Tilt, Stainless Steering Arm
E90DPXISF	1.29 L	12:27 / 0.444 O	25"	White	Power Tilt, Stainless Steering Arm
E90WDELISR	1.29 L	13:26 / 0.50 S	20"	Blue	Manual Tilt, Steel Steering Arm, Commercial Model
E90WDELISF	1.29 L	13:26 / 0.50 S	20"	Blue	Manual Tilt, Steel Steering Arm, Commercial Model
E90WDEXISR	1.29 L	12:27 / 0.444 O	25"	White	Manual Tilt, Steel Steering Arm, Commercial Model
E90WDEXISF	1.29 L	12:27 / 0.444 O	25"	White	Manual Tilt, Steel Steering Arm, Commercial Model

SERVICE SPECIFICATIONS

		40 – 65 HP E-TEC Models	
	Full Throttle Operating Range RPM	40 HP - 5000 to 6000 RPM 50 HP - 5500 to 6000 RPM 60 HP - 5500 to 6000 RPM 65 HP - 5500 to 6000 RPM	
	Power	40 HP (30 kw) @ 5500 RPM 50 HP (37 kw) @ 5750 RPM 60 HP (45 kw) @ 5750 RPM 65 HP (45 kw) @ 5750 RPM	
	Idle RPM in Gear	800 ± 50 EMM Controlled	
	Idle RPM in Neutral	750 ± 50 EMM Controlled	
	Test Propeller	P/N 382861	
ENGINE	Weight (may vary depending on model)	(RL) Models: 232 lbs. (105 kg) (PL) Models: 240 lbs. (109 kg)	
	Lubrication	Evinrude/Johnson XD100, XD50, XD30; or NMMA TC-W3 certified	
7	Engine Type	In-line, 2 Cylinder, Two-Cycle	
	Displacement	52.7 cu. in. (864 cc)	
	Bore	3.601 in (91.47 mm)	
	Stroke 2.588 in. (65.74 mm)		
	Standard Bore	3.6005 to 3.6015 in. (91.45 to 91.48 mm) To bore oversize, add piston oversize dimension to standard bore	
	Top Crankshaft Journal	2.1870 to 2.1875 in. (55.55 to 55.56 mm)	
	Center Crankshaft Journal	2.1870 to 2.1875 in. (55.55 to 55.56 mm)	
	Bottom Crankshaft Journal	1.5747 to 1.5752 in. (40.0 to 40.01 mm)	
	Rod Crankpin	1.3757 to 1.3762 in. (34.94 to 34.96 mm)	
	Piston Ring End Gap, Both	0.011 to 0.023 in. (0.28 to 0.58 mm)	
	Fuel/Oil Control	EMM Controlled	
	Starting Enrichment	EMM Controlled	
	Minimum (High) Fuel Pressure	24 to 28 psi (165 to 193 kPa)	
EL	Minimum Fuel Lift Pump Pressure	3 psi (21 kPa)	
FUE	Maximum Fuel Inlet Vacuum	4 in. Hg.	
	Minimum Octane	87 AKI (R+M)/2 or 90 RON	
	Additives	2+4 [®] Fuel Conditioner, Fuel System Cleaner Use of other additives may result in engine damage.	
		See Fuel Requirements on p. 62 for additional information	

		40 - 65 HP E-TEC Models	
ELECTRICAL	Minimum Battery Requirements	640 CCA (800 MCA) or 800 CCA (1000 MCA) below 32° F (0° C)	
TR	Alternator	25-Amp fully regulated	
EC	Tachometer Setting	6 pulse (12 pole)	
EL	Engine Fuse	P/N 967545 – 10 A	
9	Thermostat	143°F (62°C)	
COOLING	Maximum Temperature	212°F (100°C)	
ၓ	Water pressure	11 psi minimum @ 5000 RPM	
	Туре	Capacitor Discharge	
	Firing Order	1-2	
_	Ignition Timing	EMM Controlled	
Q	RPM Limit in Gear	6250	
GNITION	RPM Limit in Neutral	1800	
19	Crankshaft Position Sensor Air Gap	Fixed	
	Spark Plug	Refer to Emission Control Information Label	
	Spark Flug	Champion [†] QC10WEP @ 0.028 ± .003 in. (0.71 mm)	
111	Gear Ratio	12:32 (.375)	
GEARCASE	Lubricant	HPF XR Gearcase Lube HPF Pro in high performance or commercial applications	
4R	Capacity	22 fl. oz. (650 ml)	
3E	Shift Rod Height	20 in. (L) Models: 21.38 (543 mm) ± one-half turn	
	Shift Cable Stroke	1.125 to 1.330 in. (28.6 to 33.8 mm) measured between NEUTRAL and FORWARD	
TILT	Lubrication	Evinrude/Johnson Biodegradable TNT Fluid	
TRIM/	Fluid Capacity	15.2 fl. oz. (450 ml)	
POWER TRIM/TILT	Trim Range	0° to 15°	
POV	Tilt Range	16° to 65°	

		75 – 90 HP E-TEC Models
	Full Throttle Operating Range RPM	4500 to 5500 RPM
	Power	75 HP (56 kw) @ 5000 RPM 90 HP (67.1 kw) @ 5000 RPM
	Idle RPM in Gear	700 ± 50 EMM Controlled
	Idle RPM in Neutral	600 ± 50 EMM Controlled
ENGINE	Test Propeller	(L) Models: P/N 386246 (X) Models: P/N 387388
	Weight (may vary depending on model)	(L) Models: 320 lbs. (145 kg) (X) Models: 335 lbs. (152 kg)
	Lubrication	Evinrude/Johnson XD100, XD50, XD30; or NMMA TC-W3 certified
	Engine Type	In-line, 3 Cylinder, Two-Cycle
1	Displacement	79.1 cu. in. (1296 cc)
	Bore	3.601 in (91.47 mm)
	Stroke	2.588 in. (65.74 mm)
	Standard Bore	3.6005 to 3.6015 in. (91.45 to 91.48 mm) To bore oversize, add piston oversize dimension to standard bore
	Top Crankshaft Journal	2.1870 to 2.1875 in. (55.55 to 55.56 mm)
	Center Crankshaft Journals	2.1870 to 2.1875 in. (55.55 to 55.56 mm)
	Bottom Crankshaft Journal	1.5747 to 1.5752 in. (40.0 to 40.01 mm)
	Rod Crankpin	1.3757 to 1.3762 in. (34.94 to 34.96 mm)
	Piston Ring End Gap, Both	0.011 to 0.023 in. (0.28 to 0.58 mm)
	Fuel/Oil Control	EMM Controlled
	Starting Enrichment	EMM Controlled
	Minimum (High) Fuel Pressure	24 to 28 psi (165 to 193 kPa)
FUEL	Minimum Fuel Lift Pump Pressure	3 psi (21 kPa)
FU	Maximum Fuel Inlet Vacuum	4 in. Hg.
	Minimum Octane	87 AKI (R+M)/2 or 90 RON
		2+4 ® Fuel Conditioner, Fuel System Cleaner
	Additives	Use of other additives may result in engine damage.
		See Fuel Requirements on p. 62 for additional information

		75 – 90 HP E-TEC Models		
ELECTRICAL	Minimum Battery Requirements			
TR	Alternator	25-Amp fully regulated		
EC	Tachometer Setting	6 pulse (12 pole)		
EL	Engine Fuse	P/N 967545 – 10 A		
Q	Maximum Temperature	212°F (100°C)		
COOLING	Thermostat	143°F (62°C)		
ၓ	Water pressure	16 psi minimum @ 5000 RPM		
	Туре	Capacitor Discharge		
	Firing Order	1-2-3		
	Ignition Timing	EMM Controlled		
Q	RPM Limit in Gear	6250		
IGNITION	RPM Limit in Neutral	1800		
19	Crankshaft Position Sensor Air Gap	Fixed		
	Spark Plug	Refer to Emission Control Information Label		
	Opark Flug	Champion [†] QC10WEP @ 0.028 ± .003 in. (0.71 mm)		
1	Gear Ratio	20 in. (L) Models: 13:26 (.500) 2:1 25 in. (X) Models: 12:27 (.444) 2.25:1		
SE	Lubricant	HPF XR Gearcase Lube		
GEARCASE	Capacity	20 in. (L) Models: 31.6 fl. oz. (935 ml) 25 in. (X) Models: 32.8 fl. oz. (970 ml)		
GE/	Shift Rod Height	20 in. (L) Models: 21.25 (539.75 mm) ± one-half turn 25 in. (X) Models: 26.25 (666.75 mm) ± one-half turn		
	Shift Cable Stroke	1.125 to 1.330 in. (28.6 to 33.8 mm) measured between NEUTRAL and FORWARD		
171	Lubrication	Single Piston System–Evinrude/Johnson Biodegradable TNT Fluid		
L/N	Fluid Capacity	21 fl. oz. (620 ml)		
TRII	Trim Range	0° to 15°		
POWER TRIM/TILT	Tilt Range	16° to 65°		

STANDARD TORQUE SPECIFICATIONS

Size	In. Lbs.	Ft. Lbs.	N∙m
No. 6	7–10	0.58-0.83	0.8–1.1
No. 8	15–22	1.25–1.83	1.7–2.5
No. 10	24–36	2–3	2.7–4.0
No. 12	36–48	3–4	4.0-5.4
1/4 in.	60–84	5–7	7-9.5
5/16 in.	120–144	10–12	13.5–16.5
3/8 in.	216–240	18–20	24.5–27
7/16 in.	336–384	28–32	38–43.5
М3	15–22	1.25–1.83	1.7–2.5
M4	24–35	2–2.9	2.7–4.0
M5	35–60	2.9–5	4.0–6.8
M6	84–106	7–8.8	9.5–12
M8	177–204	14.7–17	20–23
M10	310–336	25.8–28	35–38

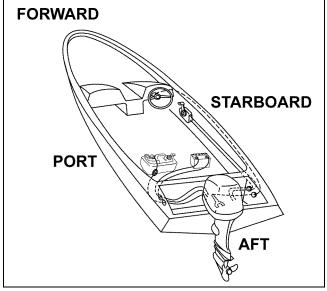
IMPORTANT: These values apply only when a specific torque for a specific fastener is not listed in the appropriate section. When tightening two or more screws on the same part, DO NOT tighten screws completely, one at a time.

▲ WARNING

Torque wrench tightening specifications must be strictly adhered to. Replace any locking fastener (locknut or patch screw) if its locking feature becomes weak. Definite resistance to turning must be felt when reusing a locking fastener.

If replacement is specified or required because the locking fastener has become weak, use only authorized *Evinrude/ Johnson Genuine Parts*.

PRODUCT REFERENCE AND ILLUSTRATIONS


BRP US Inc. reserves the right to make changes at any time, without notice, in specifications and models and also to discontinue models. The right is also reserved to change any specifications or parts, at any time, without incurring any obligation to equip same on models manufactured prior to date of such change. Specifications used are based on the latest product information available at the time of publication.

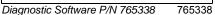
The continuing accuracy of this manual cannot be guaranteed.

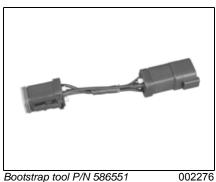
All photographs and illustrations used in this manual may not depict actual models or equipment, but are intended as representative views for reference only.

Certain features or systems discussed in this manual might not be found on all models in all marketing areas.

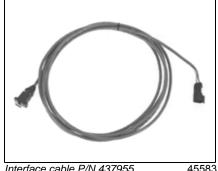
All service technicians must be familiar with nautical orientation. This manual often identifies parts and procedures using these terms.

Nautical Orientation


SPECIAL TOOLS


TABLE OF CONTENTS

IAGNOSTIC TOOLS	6
NIVERSAL TOOLS	6
LECTRICAL / IGNITION TOOLS	8
UEL /OIL SYSTEM TOOLS1	9
OWERHEAD TOOLS	9
EARCASE TOOLS	20
RIM AND TILT TOOLS	2
IANUAL STARTER TOOLS	23
HOP AIDS	24


DIAGNOSTIC TOOLS

Bootstrap tool P/N 586551

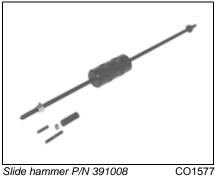
Interface cable P/N 437955

45583

UNIVERSAL TOOLS

Universal Puller Set P/N 378103

Lifting eye P/N 321537



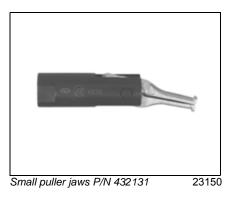
Lifting fixture P/N 396748

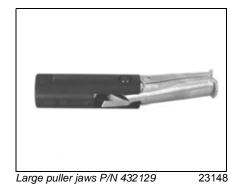


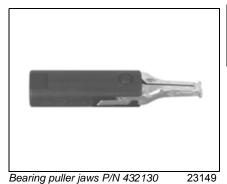
Flywheel holder P/N 771311

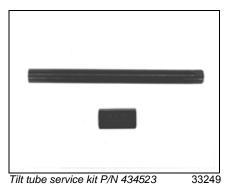
Slide hammer P/N 391008

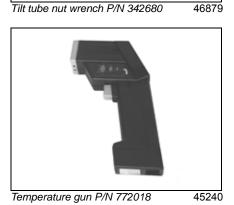
Slide hammer P/N 432128

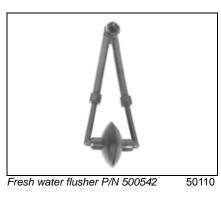

39435 Slide hammer adapter P/N 340624

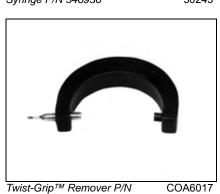


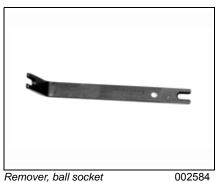

Slide hammer adapter P/N 390898 15356

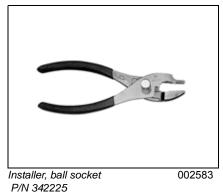

Puller Bridge – 432127

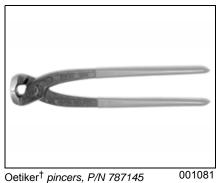


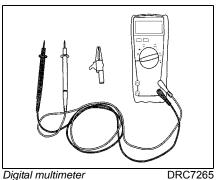


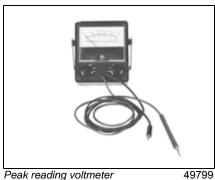




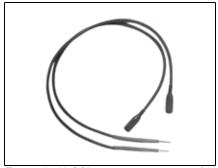




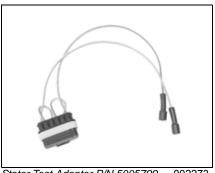




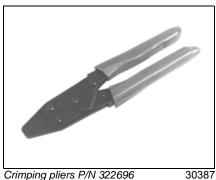
Remover, ball socket P/N 342226


ELECTRICAL / IGNITION TOOLS

Digital multimeter Ohms resolution 0.01 Purchase through local supplier



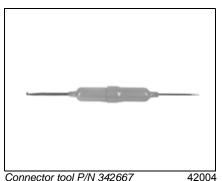
Peak reading voltmeter P/N 507972



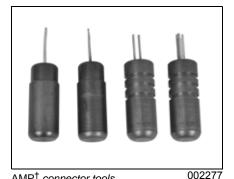
Test probe kit P/N 342677

45241

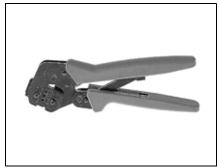
Stator Test Adapter P/N 5005799 002273



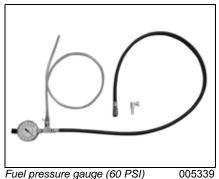
Crimping pliers P/N 322696



Tachometer/timing light P/N 507980



Connector tool P/N 342667



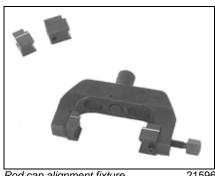
AMP[†] connector tools Primary Lock Tool P/N 777077 Secondary Lock Tool P/N 777078 Release Tool P/N 351413 Lock Installer P/N 777079

AMP Crimping Tool, P/N 777281 Replacement dies, P/N 777282

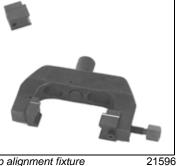
FUEL /OIL SYSTEM TOOLS

Fuel pressure gauge (60 PSI) P/N 5007100 90° fitting, P/N 353322

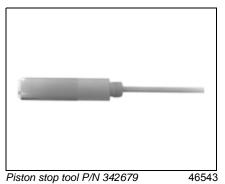
Fuel pressure gauge (15 PSI) P/N 5006397 90° fitting, P/N 353322


Injector test fitting kit P/N 5005844

002465

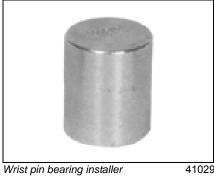

POWERHEAD TOOLS

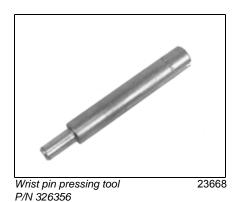
Cylinder bore gauge P/N 771310

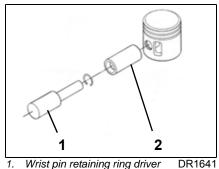

Rod cap alignment fixture P/N 396749

installer P/N 338647

21953**B**


Replacement tip P/N 5006098


Torquing socket P/N 331638

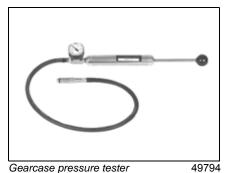


P/N 336660

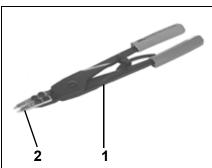
SPECIAL TOOLS GEARCASE TOOLS

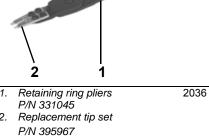


Wrist pin retaining ring driver P/N 318599


Wrist pin cone P/N 318600

GEARCASE TOOLS

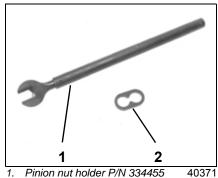



Universal Driveshaft Shimming Tool 002601 P/N 5005925

1. Lower Driveshaft Shimming Bolt (S2 gearcase) P/N352878

Gearcase pressure tester P/N 507977 (Stevens P/N S-34) Gearcase vacuum tester P/N 507982 (Stevens P/N V-34)

49790


Gearcase filler P/N 501882

Universal Pinion Bearing Remover and installer kit P/N 5005927

Universal shift rod height gauge P/N 389997

Pinion nut holder P/N 334455

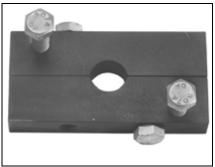
Wrench retainer P/N 341438

16302 Holding Socket P/N 334995

Driveshaft socket P/N 311875

Bearing Installer P/N 326562

32962



Driveshaft seal protector P/N 312403, or P/N 318674

Prop shaft housing seal installer P/N 326551, P/N 336311

32973

Driveshaft Puller P/N 387206, 47254 or P/N 390706

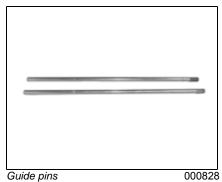
Nut starting tool P/N 320675, or 40372 P/N 342216

Seal Installer P/N 342665

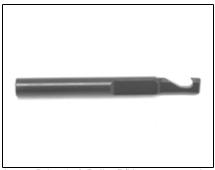
42233

Gearcase Alignment Gauge Kit 004315 P/N 5006349

Gauging Head, "S" Type Gearcases, P/N 352879


Seal installation tool P/N 330268

SPECIAL TOOLS

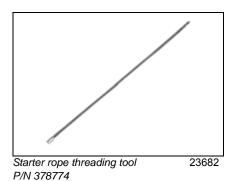

TRIM AND TILT TOOLS

Prop shaft bearing installer P/N 339750

Guide pins P/N 383175

Lower Driveshaft Puller P/N 342681 47257

TRIM AND TILT TOOLS


Tilt cylinder end cap remover P/N 352932, for single-piston tilt systems

Spanner wrench P/N 912084

32213

MANUAL STARTER TOOLS

SPECIAL TOOLS

SHOP AIDS

SHOP AIDS

Cleaning Solvent P/N 771087

D.P.L. Spray P/N 777183

Oil - XD30™ P/N 764349

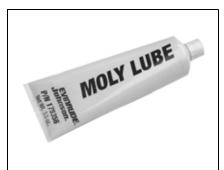
"6 in 1" Multi-Purpose Lubricant P/N 777192

Oil - XD50™ P/N 764354

HPF XR™ Gear Lube P/N 778749

Oil - XD100™ P/N 764357

Anti-Corrosion Spray P/N 777193


HPF PRO Gearcase Lube P/N 778755

Engine Tuner P/N 777185

Silicone spray P/N 775630

Moly Lube P/N 175356

Storage Fogging Oil P/N 777186

Power Trim/Tilt and Power Steering Fluid P/N 775612

Electrical Grease P/N 503243

Lubriplate† 777 P/N 317619

Black Neoprene Dip P/N 909570

2 + 4TM Fuel conditioner P/N 775613

Triple-Guard® Grease P/N 508298

Starter Bendix Lube P/N 337016

Gel-Seal and Gasket Remover P/N 771050

Needle Bearing Grease, P/N 378642

Biodegradeable TNT Fluid P/N 763439

Permatex[†] No. 2, P/N 910032

SPECIAL TOOLS

SHOP AIDS

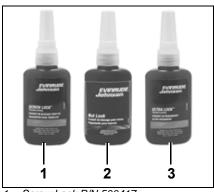
RTV Silicone Sealant P/N 263753

Gasket Sealing Compound P/N 508235

Thermal Joint Compound P/N 322170

Fuel System Cleaner P/N 763681

Pipe Sealant with Teflon P/N 910048


Instant Bonding Adhesive P/N 509955

Gel-Seal II P/N 327361

Locquic Primer P/N 772032

Screw Lock P/N 500417

- (Loctite[†] Purple 222 equivalent Nut Lock P/N 500421 (Loctite Blue 242 Equivalent) Ultra Lock P/N 500423 (Loctite Red 271 Equivalent)

Carbon Guard™ P/N 775629

INSTALLATION AND PREDELIVERY

TABLE OF CONTENTS

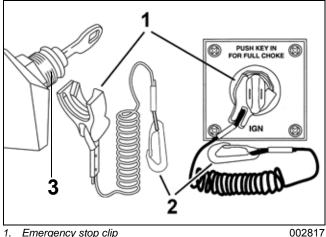
BOAT RIGGING	28
REMOTE CONTROLS	28
INFORMATION DISPLAY SYSTEMS	30
BATTERY INSTALLATION	33
FUEL SYSTEM REQUIREMENTS	37
CABLE AND HOSE INSTALLATION	40
OUTBOARD INSTALLATION	44
HULL PREPARATION	44
TRANSOM MEASURING AND DRILLING	46
DRILLING AND HARDWARE DIAGRAMS	48
LIFTING THE OUTBOARD	52
STEERING SYSTEMS	52
OUTBOARD MOUNTING	54
OUTBOARD RIGGING	56
CABLE, HOSE, AND WIRE ROUTING	57
CONTROL CABLE INSTALLATION	57
SYSTEMCHECK HARNESS CONNECTIONS	58
I-COMMAND NETWORK CONNECTIONS	59
WATER PRESSURE GAUGE	
FUEL AND OIL PRIMING	62
FUEL REQUIREMENTS	62
FUEL SYSTEM PRIMING	63
OIL REQUIREMENTS	
OIL INJECTION RATE	64
BREAK-IN OILING	
OIL SUPPLY PRIMING	
BEFORE START-UP	66
RUNNING CHECKS	67
PROPELLERS	69
PROPELLER SELECTION	69
PROPELLER HARDWARE INSTALLATION	70
WATER TEST AND FINAL ADJUSTMENTS	71
ENGINE MOUNTING HEIGHT AND JACK PLATE ADJUSTMENT	71
FUEL SYSTEM VACUUM	71
ENGINE WATER PRESSURE	
TILT LIMIT SWITCH ADJUSTMENT (75 – 90 HP)	73
TRIM SENDING UNIT ADJUSTMENT (75 – 90 HP)	
TRIM SENDING UNIT ADJUSTMENT (40 – 60 HP)	75
TRIM TAB ADJUSTMENT	76
DUAL-OUTBOARD ALIGNMENT	77

INSTALLATION AND PREDELIVERY

BOAT RIGGING

BOAT RIGGING

Remote Controls


Control System Selection

Outboard remote control systems provide the operator with tools for:

- Starting and stopping the engine
- Shifting into Forward, Neutral, or Reverse
- Changing engine speed
- Changing the tilt/trim angle of the outboard.

The remote control system must include the following features:

- Shift stroke must be 1.125 to 1.330 in. (28.6 to 33.8 mm) between Neutral and Forward
- Throttle stroke must PUSH for open
- Start-in-gear prevention
- Emergency stop switch with lanyard—multipleoutboard installations require separate start switches and a single emergency stop switch
- Connections for engine monitor warning system Refer to Engine Monitor System on p. 30.

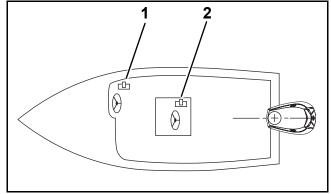
- Emergency stop clip
- Safety lanyard
- 3. Key switch with emergency stop feature

WARNING

The remote control used must have startin-gear prevention. This feature can prevent injuries resulting from unexpected boat movement when the outboard starts.

Always install and recommend use of an emergency stop/key switch. Doing so will reduce the risk of personal injury or death should the operator fall away from the controls or out of the boat.

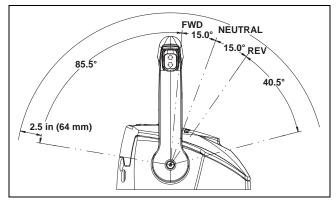
Several remote control options are available in the Evinrude/Johnson Genuine Parts and Accessories catalog.


Mechanical control systems use push/pull cables to physically move the shift and throttle components on the outboard.

These systems use a Modular Wiring System (MWS) harness to carry start, stop, and trim signals (analog) to the outboard. Specific harness selection depends on the type of Information Display system being used. Refer to Information Display Systems on p. 30.

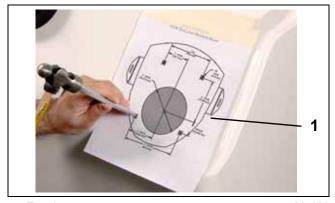
Control Installation

Plan the installation of remote controls carefully, following all instructions provided with the control.


Select an appropriate location based on the boat configuration.

- Side console
- Center console

IMPORTANT: The mounting location must be a flat surface and must be strong enough to provide rigid support. Strengthen mounting surface as necessary.


Place remote control at proposed location and check clearance around remote control lever at full throttle in FORWARD and then at full throttle in REVERSE. There must be at least 2.5 in. (64 mm) of clearance between the handle and any part of the boat throughout the control lever travel.

Typical control clearances

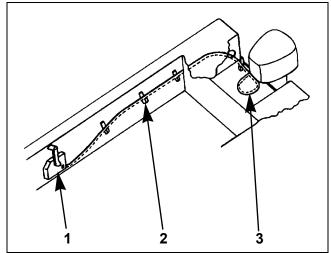
007920

Use an appropriate drill template to cut mounting holes. Templates are included with the control instructions.

Template

007922

Install control with hardware provided.


IMPORTANT: Make sure remote control assembly is secure and does not move during operation.

Control Cable Routing

Control cables and harnesses should be routed along a protected path to the rear of the boat and secured to prevent movement or damage.

Harness connections should be mounted in a dry location, away from bilge and motor well areas.

Control cables should be long enough to allow a 12 in. (30 cm) cable loop at the front of the outboard when the cables are routed from the side of the splash well.

1. Surface side-mount remote control

DR4277

- Cable support
- 3. 12 in. (30 cm) cable loop at front of outboard

Information Display Systems

Engine Monitor System

All remote controlled outboards must be equipped with an engine monitoring system to warn the operator of conditions that could damage the outboard.

The engine monitor system includes sensors on the outboard and oil tank, a warning horn, a dashmounted display, and related wiring.

The outboard's *EMM* sends information about monitored functions to:

- · SystemCheck gauges, or
- An I-Command or ICON display.

IMPORTANT: Operating the outboard without an engine monitor will void the warranty for failures related to monitored functions.

Typical I-Command and SystemCheck gauges

007988

SystemCheck Gauges

SystemCheck gauges are used with mechanical remote control systems only.

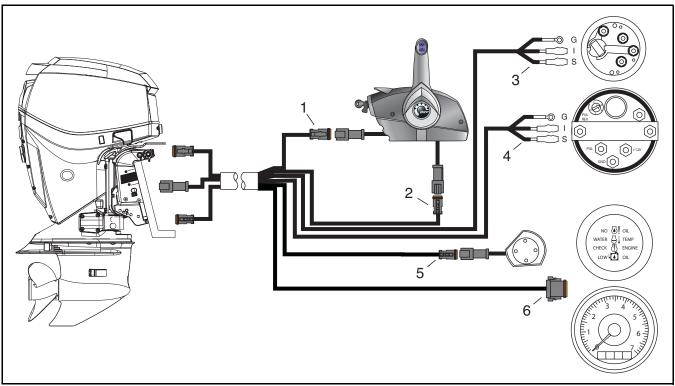
SystemCheck gauges receive monitored information from the outboard through a Modular Wiring System (MWS) harness.

Refer to SystemCheck (MWS) Harness Connections on p. 31.

I-Command Displays

I-Command digital displays are designed specifically for *NMEA 2000* certified *Evinrude E-TEC* outboards. These displays provide enhanced engine and boat performance information. Multiple functions are integrated into the easy-to-use displays. Additional displays and accessories can be added with the plug and play design.

I-Command information displays can be used with mechanical remote control systems. For complete installation instructions, refer to *I-Command* **Installation Guide**.

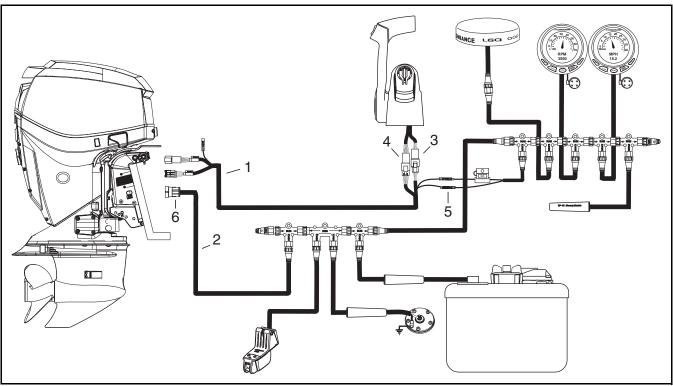

When installing an *I-Command* network, remember:

- A terminator must be installed at each end of the network
- There should be no open or unused network device connectors
- The network should be grounded at a single location only
- A maximum of 50 devices can be attached to the network *
- The distance between any two points on the network must not exceed 100 meters (328 ft.).
- * The *EMM* on *Evinrude E-TEC* outboards has a load equivalency number of 1. Less than 50 mA of the network's power is used by the *EMM*.

The *I-Command* network receives monitored information through an *I-Command* network harness connected directly to the outboard's *EMM*. An *I-Command* Ignition and Trim harness is required to carry start, stop, and trim signals to the outboard.

Refer to **I-Command Harness Connections** With Mechanical Remote Control on p. 32.

SystemCheck (MWS) Harness Connections


Typcial MWS wiring with a side-mount mechanical remote control

- 1. **6-Pin Connector** Connect to a pre-wired remote control or to a dash-mounted key switch.
- 2. **3-Pin Connector** Connect to remote control trim switch or to a dash-mounted trim switch.
- 3. Black, purple, white/tan wires Connect to the trim gauge.
- 4. **Black**, **purple**, **gray wires** Connect to a conventional tachometer when a *SystemCheck* tachometer is not used.
- 5. **2-Pin Connector** Must connect to the warning horn in all installations.
- 6. **8-Pin Connector** Connect to a *SystemCheck* gauge or tachometer.

INSTALLATION AND PREDELIVERY

BOAT RIGGING

I-Command Harness Connections With Mechanical Remote Control

Typcial I-Command wiring with a binnacle-mount mechanical remote control

- 1. I-Command Ignition and Trim Harness
- 2. I-Command Network Harness
- 3. **6-Pin Connector** Connect to a pre-wired remote control or to a dash-mounted key switch.
- 4. **3-Pin Connector** Connect to remote control trim switch or to a dash-mounted trim switch.
- 5. Purple, black wires Connect to network power supply.
- 6. 4-Pin Amp Connector Connect to outboard EMM.

Battery Installation

Each outboard requires its own starting battery. Select a battery that meets or exceeds the minimum requirements.

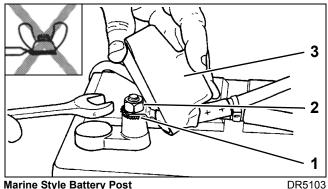
Battery Recommendations

Outboard Model	Battery Rating
40-90 HP	640 CCA (800 MCA), or 800 CCA (1000 MCA) below 32° F (0° C) 107 amp-hr in extreme applications

Battery Location

Proper installation will prevent battery movement while underway.

- Secure all batteries in protected locations
- Place battery as close to the outboard as possi-
- · Battery location must provide access for periodic maintenance
- Use battery mounting trays or battery boxes on all battery installations
- · Connections and terminals must be covered with an insulator
- · Battery connections must be clean and free from corrosion
- Read and understand the safety information supplied with the battery before installation.


Battery Connections

WARNING

Keep the battery connections clean, tight, and insulated to prevent their shorting or arcing and causing an explosion. If the battery mounting system does not cover the connections, install protective covers. Check often to see that connections stay clean and tight.

IMPORTANT: Connect the battery positive (+) cable to the battery positive (+) post FIRST. Connect the battery negative (-) cable to the battery negative (-) post LAST.

Install a starwasher on the threaded battery post. Stack cables from the outboard, then cables from accessories. Finish this connection with a hex nut.

- Marine Style Battery Post Starwasher
- Hex nut
- Terminal Insulator

NOTICE Do not use wing nuts to fasten ANY battery cables. Wing nuts can loosen and cause electrical system damage not covered under warranty.

Tighten all connections securely. Apply Triple-Guard grease to prevent corrosion.

Battery Cable Requirements

Evinrude outboards are shipped with stranded copper battery cables for typical installations in which the starting battery is close to the transom.

Specialized outboard installations with extended length battery cables require an increased wire size. Refer to the following table.

	15–30 HP	40–300 HP
1 to 10 Ft. (.3 to 3 m)	6 Gauge	4 Gauge
11 to 15 Ft. (3.4 to 4.6 m)	4 Gauge	2 Gauge
16 to 20 Ft. (4.9 to 6.1 m)	2 Gauge	1 Gauge

IMPORTANT: Inadequate battery cables can affect the performance of an outboard's high amperage start circuit and the cranking speed of the outboard. DO NOT use aluminum wire cables. Use ONLY AWG stranded copper wire cables.

INSTALLATION AND PREDELIVERY

BOAT RIGGING

Battery Switches and Multiple Batteries

A multiple battery setup, including marine battery selector switches, can provide flexibility in single and dual outboard installations.

Refer to **Battery and Switch Wiring Diagrams** on p. 36 for battery connection options.

The battery selection function can be used for emergency starting if a primary battery becomes discharged.

The OFF position of the battery selector switch can be used to minimize battery discharge during periods of non-use.

Typical battery functions

Primary

- Used as starting battery under normal operating conditions.
- Red (+) cable connected to battery switch.
- Primary battery is charged by connection to main red (+) outboard battery cable.

Dual outboard installations can utilize the opposing outboard's primary battery as a secondary battery for emergency starting only.

Secondary

- Used as back-up starting battery under abnormal operating conditions.
- Red (+) cable connected to battery switch.
- Secondary battery is charged independently from primary battery.

Accessory

- Not used as starting battery.
- · Isolated from outboard start function.
- No red (+) cable connected to battery switch.

Secondary and accessory batteries are often charged by an isolated battery charging circuit. Refer to **Auxiliary Battery Charging** on p. 35.

Battery Switch Requirements

Battery switches must meet the following requirements.

- The switch must be approved for marine use.
- The switch should be a "make before break" design.
- Switch amperage rating should be adequate for the outboard it will be used on.
- Use one battery switch for each outboard installed.
- Use appropriately sized wire and terminals.
- Use AWG stranded copper wire.

Battery Switch Location

- Locate battery switch as close to the batteries as possible.
- Locate switch so that it cannot be accidently bumped or switched.
- Refer to the battery switch manufacturer's installation instructions.
- Fasten all battery switches to solid surfaces.
- · Route wiring as directly as possible.
- Support the battery switch as needed to prevent abrasion.
- Use appropriate wiring and connectors.
- Seal all connections and terminals with liquid neoprene to prevent corrosion.

NOTICE Insulate all battery positive (+) terminals to prevent shorting.

Battery Switch Operation

- Select the primary battery for normal operation.
- Secondary batteries should only be selected for emergency starting.
- ALL or BOTH switch position is for emergency starting only.

Provide operator with the documentation supplied by the battery switch manufacturer. Make sure that the operator is informed of proper battery switch operation.

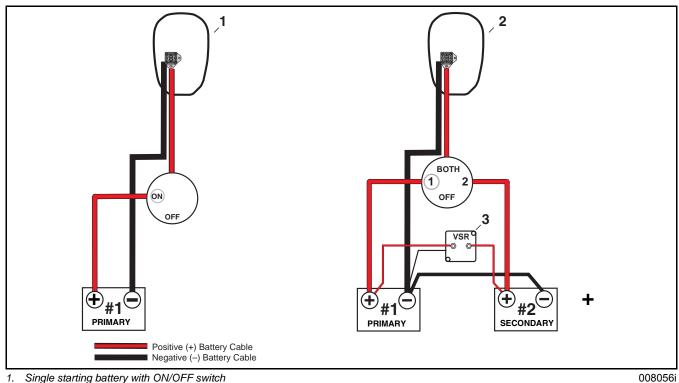
NOTICE The negative (–) terminals of a multiple 12-volt battery installation must be connected together.

Auxiliary Battery Charging

Evinrude E-TEC 40 – 90 HP outboards do not have a built in isolator feature. Proper methods must be used to connect a second battery.

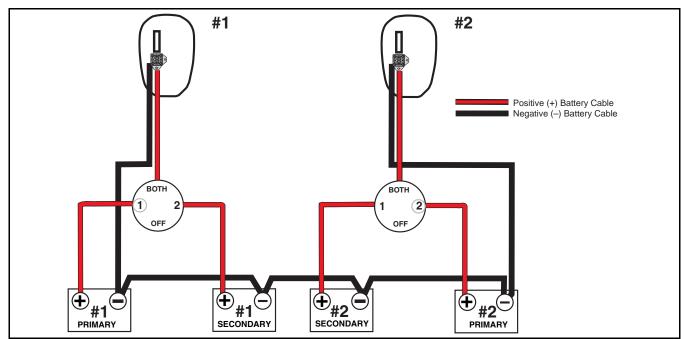
Battery charging output on 40 - 90 HP models is 25 Amps. Be sure to follow published standards for wire gauge selection. Refer to **Battery Cable Requirements** on p. 33.

If a battery isolator is desired, a battery switch, such as P/N 506161, and a voltage sensitive relay, such as *BEP* model 710-125A, can be used to create a battery isolator/combiner.


The voltage sensitive relay (VSR) regulates charging of a second battery based on predetermined voltage levels of the primary battery.

NOTICE Never connect an external battery isolator to the stator of an *Evinrude E-TEC*.

BOAT RIGGING


Battery and Switch Wiring Diagrams

Single outboard

- Single starting battery with ON/OFF switch
- Two starting batteries with isolator/combiner (15 90 HP models)
- Voltage sensitive relay

Two outboards: Two starting batteries each

008055i

Fuel System Requirements

Regulations and Guidelines

Vessel manufacturer, and/or installer of an EPA certified outboard, must meet minimum specifications for boat fuel systems established by:

- U.S. Environmental Protection Agency (EPA)
 - 40 CFR 1045.112
 - -40 CFR 1060
- U.S. Coast Guard (USCG)
 - 33 CFR 183
- American Boat & Yacht Council (ABYC)
 - Standard H-24
 - Standard H-25.

Permanent Fuel Tanks

Permanent fuel tanks must be properly vented outside of the hull.

Remote fuel tank gas fills must be grounded.

Fuel tank pickups should include an anti-siphon valve to prevent fuel flow if a leak occurs in the fuel distribution system.

Portable Fuel Tanks

WARNING

If engine is equipped with a quick-disconnect fuel hose, you MUST disconnect the fuel hose from the engine and the fuel tank to prevent fuel leaks:

- Whenever the engine is NOT being used
- Whenever the engine is being trailered
- · Whenever the engine is in storage.

NOTE: A small amount of fuel may be released when the fuel connector is disonnected.

Store portable fuel tanks in well-ventilated areas, away from heat sources and open flames. Close the vent screw of the fuel tank cap, if equipped, to prevent escape of fuel or fuel vapors which could accidentally ignite. Do not allow disconnected fuel hoses to leak fuel.

NOTICE Do not use portable fuel tanks for outboards larger than 115 HP. Inadequate fuel flow to high horsepower outboards can result in serious powerhead damage.

Fuel Hose

All fuel hoses used for rigging outboards manufactured after January 1, 2009 must meet EPA permeation requirements for evaporative emissions.

- Use SAE J30R9, or USCG Type B1-15, fuel hose in motor well areas.
- Use USCG Type A1-15 fuel hose between permanent fuel tanks and motor well fittings in inaccessible routings.
- Compliant hoses are labeled with the applicable specification.

Specification
 Date code

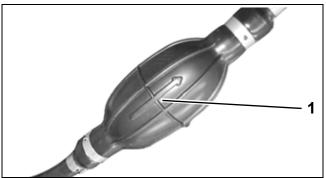
007944

Permanently installed fuel hoses should be as short and horizontal as possible.

Use corrosion-resistant metal clamps on permanently installed fuel hoses.

Multi-outboard applications require separate fuel tank pickups and hoses. (A fuel selector switch may be used for "kicker" motors as long as it has enough flow capacity for the larger outboard.)

Use only fuel lines (or copper tubing) that meet the **Fuel Flow Requirements** for the outboard.


BOAT RIGGING

Fuel System Primer

Outboards require a priming system to refill the fuel system after periods of non-use. The most common priming system is a primer bulb in the fuel supply hose.

Install the primer bulb as follows:

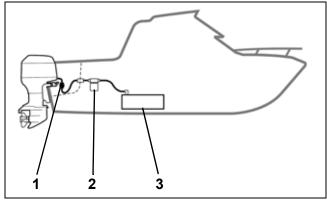
- The primer bulb must meet the same Fuel Flow Requirements as the fuel hose.
- The primer bulb should be easily accessible.
- The arrow on the primer bulb must point in the direction of fuel flow.
- The fuel supply hose must allow the primer bulb to be held with the arrow pointing up during priming.

Arrow indicates direction of fuel flow

000124

An alternative to a primer bulb is a U.S. Coast Guard approved marine primer pump. Electric primer pumps offer the convenience of outboard priming from a dash-mounted momentary switch.

Fuel Filters


Boat-mounted fuel filters and water-separating fuel filter assemblies must meet the required fuel flow and filter specification. Refer to **Fuel Flow Requirements**.

The filter must be mounted to a rigid surface above the full level of the fuel tank and accessible for servicing.

Fuel Filter Assembly, P/N 174176, meets all requirements for a water-separating fuel filter.

174176

Typical Fuel Supply Configuration

DRC6797

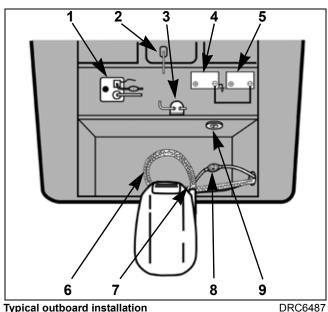
- 1. Primer bulb
- 2. Water separating fuel filter
- 3. Anti-siphon valve, in fuel pick-up of tank

NOTICE Avoid using in-line fuel filters external to the outboard. The filter area and flow characteristics may not be adequate for high horsepower outboards.

Fuel Flow Requirements

	15 – 30 HP	40 – 90 HP	115 – 300 HP
Fuel tank pickup tube	1/4 in. (6.4 mm) min. ID	5/16 in. (7.9 mm) min. ID	3/8 in. (9.5 mm) min. ID
Fuel fittings	5/32 in. (4.1 mm) min. ID	1/4 in. (6.4 mm) min. ID	9/32 in. (7.1 mm) min. ID
Fuel supply hoses	1/4 in. (6.4 mm) min. ID	3/8 in. (9.5 mm) min. ID	3/8 in. (9.5 mm) min. ID
	ALL MODELS		
Fuel tank pickup screen	100 mesh, 304 grade stainless steel wire, 0.0045 in. wire diameter, 1 in. (25 mm) long		
Antisiphon valve	2.5 in. (63.5 mm) Hg maximum pressure drop at 20 gph (76 l/hr) flow		
Remote fuel filter	0.4 in. Hg maximum pressure drop at 20 gph (76 l/hr) flow, 150 in.² (1290 cm²) of filter area		
Maximum fuel pump lift height	Fuel pump should not be located more than 30 in. (76.2 cm) above bottom of fuel tank		

BOAT RIGGING


Cable and Hose Installation

Before installation, identify all required wiring, cables, and hoses:

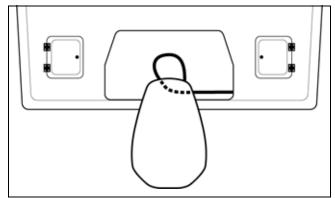
- Throttle and shift cables
- Instrument harnesses
- Battery cables and switches
- Fuel supply hose
- Primer bulb or primer pump

Determine whether any additional wiring or hoses will be needed for accessory gauges or batteries:

- Speedometer pick-up hose
- Mechanical water pressure gauge hose
- Accessory battery charging kit
- I-Command adapter harnesses
- *I-Command* water pressure sensor kit
- *I-Command* oil level sensor kit.

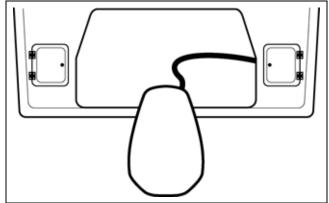
Typical outboard installation

- 1. Oil tank
- Anti-siphon valve
- Water separating fuel filter
- 4. Starting battery
- 5. Accessory battery
- 6. Flexweave protective sleeve
- Access cover
- Primer bulb
- 9. Battery switch

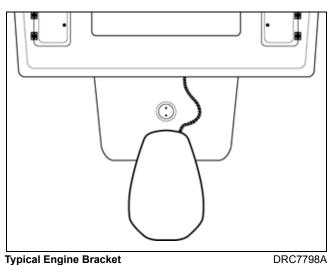

Boat Cable and Harness Routing

WARNING

Improper installation and routing of outboard controls could wear, bind, and damage components, causing loss of control.


Remote control cables, wiring, and hoses must follow a similar path into the lower motor covers. Select the best routing for the specific application.

All cables, wiring, and hoses must be long enough to provide adequate slack. Check clearances at all possible combinations of trim angles and steering positions.


Typical Small Splash Well

DRC7799

Typical Large Splash Well

DRC7797

DRC7798A

Protective Sleeve/Conduit

Make sure all cables, wiring, and hoses have been identified and fitted to the appropriate lengths. Refer to OUTBOARD RIGGING on p. 56.

Next, bundle the components that route to the outboard with appropriate shielding, such as an expandable "flexweave" sleeve or a flexible conduit.

Battery Cables

When routing battery cables, be sure to:

- Route cables through the protective sleeve.
- Use the most direct path to route the battery cables to the battery or battery switch.

Fuel Hose

The fuel hose may be routed outside of the protective sleeve or conduit. Electric primers or manual primers may not require this consideration.

Route fuel hoses with enough slack to allow the primer bulb arrow to point "up" during use.

Install the primer bulb with the arrow pointing in the direction of fuel flow to the outboard.

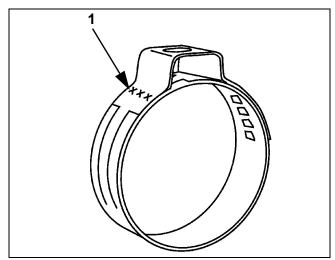
Connect the fuel supply hose from the fuel tank to the fuel supply line at the outboard.

IMPORTANT: Do not permanently fasten this connection until the boat's fuel system has been primed.

BOAT RIGGING

Oetiker Clamp Servicing

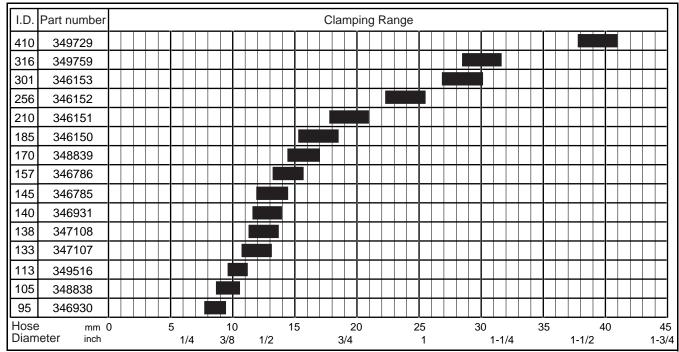
Clamp Identification


Use *Oetiker* clamps for making hose connections. These clamps provide corrosion resistance, minimize the potential for abrasion of rigging components, and provide solid, permanent connections.

The selection and installation of an *Oetiker* clamp is essential in the proper sealing of hose connections. The clamp identification numbers appear on the side of the clamp, near the top of the ear. Refer to **Clamp Selection** chart for dimensions.

WARNING

DO NOT re-use *Oetiker* clamps. Fuel leakage could contribute to a fire or explosion.


1. Clamp identification numbers

000093

Clamp Selection

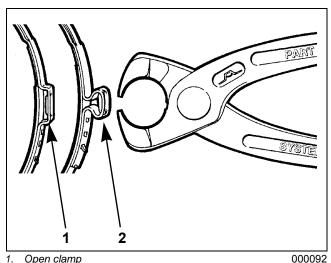
To select the correct size *Oetiker* clamp, measure the outside diameter of the hose when installed on the fitting.

Chose a clamp so that the outside diameter of the hose is approximately in the middle of the clamping range of the clamp.

008052

Clamp Installation

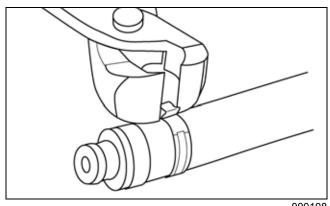
A constant stress should be applied to close the ear clamps. This method ensures a positive stress on the hose and does not result in excessive compression or expansion of the band material.


IMPORTANT: Use only *Oetiker* recommended tools to close Oetiker stepless clamps.

Oetiker pincers are available in the Evinrude/Johnson Genuine Parts and Accessories Catalog.

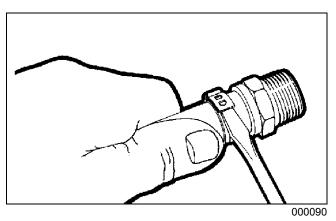
DP0886

- · Position correct size clamp over hose.
- Install hose on fitting.
- · Close clamp ear fully with Oetiker pincers (pliers).

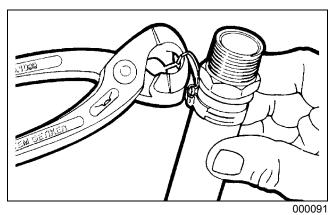


Open clamp

Closed clamp


Clamp Removal

Method 1: Position Oetiker pincers across clamp ear and cut clamp.



000108

Method 2: Lift end of stepless clamp with screwdriver.

Method 3: Use Oetiker pincers (pliers) to grip clamp. Pull clamp off of connection and discard.

OUTBOARD INSTALLATION

OUTBOARD INSTALLATION

Hull Preparation

Maximum Capacity

WARNING

Do not overpower the boat by installing an outboard that exceeds the horsepower indicated on the boat's capacity plate. Overpowering could result in loss of control.

Before installing outboard:

- Refer to the boat manufacturer's certification label for maximum horsepower rating.
- Refer to ABYC Standards to determine the maximum horsepower capacity for boats without certification labeling.

1029A

Mounting Surface

Inspect transom surface prior to drilling mounting holes.

- The transom should meet ABYC Standards.
- The transom must be flat.
- The transom angle should be approximately 14 degrees.
- Check transom strength and height.

The stern brackets must contact the flat surface of the transom. Modify trim that prevents the stern brackets from resting against the transom surface. Do not modify stern brackets.

A

WARNING

DO NOT install an outboard on a curved or irregular surface. Doing so can wear, bind, and damage components, causing loss of control.

Transom Clearances

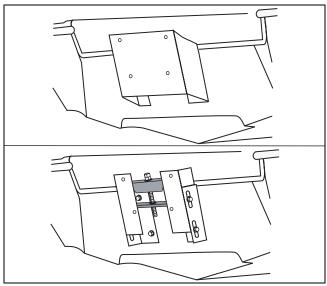
Make sure the transom and splash well area provide adequate clearances:

- The top edge of the transom should be wide enough to allow full steering travel. The ABYC standard for most single outboard installations is 33 in. (84 cm).
- Check cable and hose routing clearances.
- Make sure there is clearance for mounting bolts and washers. Check the inside area of the transom for obstructions before drilling holes.

Water Flow

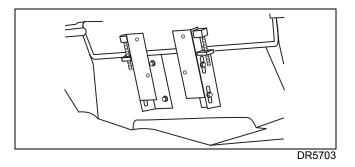
Inspect the hull area directly in front of the mounting location.

- Boat-mounted equipment should not create turbulence in the water flow directly in front of the outboard's gearcase. Turbulence or disruptions in the water flow directly in front of the gearcase will affect engine cooling and propeller performance.
- Avoid locating outboard centerlines within 3 in. (76 mm) of bottom strakes on dual-outboard installations.


Transom Brackets and Jack Plates

When mounting an outboard on a jack plate:

- Refer to the manufacturer's recommendations for maximum weight and horsepower.
- The jack plate must provide a rigid, one-piece mounting assembly—either a solid surface, or surfaces adequately connected to prevent flexing or twisting.
- DO NOT use a jack plate constructed in two separate pieces—lack of support can twist the stern brackets, wear tilt tube bushings and thrust rollers, and bend or break components.


IMPORTANT: Damage caused by use of a twopiece jack plate or unstable mounting surface will not be covered by warranty.

Recommended Designs

007992 007991

Not Recommended

Whenever possible, use mounting hardware supplied with the outboard to install jack plate on transom. Tighten to a torque of 40 ft. lbs. (54 N·m).

NOTICE To prevent damage to outboard, check installation frequently for:

- Loose mounting bolts and nuts
- Loose tilt tube or steering cable nuts
- Elongated mounting holes
- Bent or deformed washers

Replace any hardware that fails to maintain torque specifications.

Mounting Hardware

▲ WARNING

Use all mounting hardware supplied with the outboard to help ensure a secure installation. Substituting inferior hardware can result in loss of control.

Outboard mounting hardware must meet minimum specifications for material and strength:

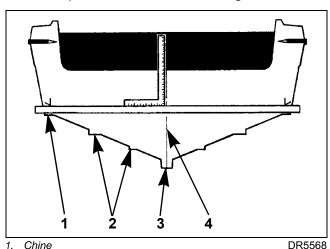
- Material: Stainless steel; Group 1,2,3 per ASTM F593 OR Grade A2 per ISO 3506-1.
- Strength: Minimum proof load.

Part Number	Length (inches)	Thread Size	Proof Load Minimum (lbs.)
327053	3	1/2-13	18,520
318573	3.5	1/2-13	12,771
336676	4.75	1/2-13	12,771
331578	5	1/2-13	18,520
354101	6	1/2-13	18,520
354102	7	1/2-13	18,520
354103	8	1/2-13	18,520
354104	9	1/2-13	18,520

Outboard mounting bolts, backing plates, washers, and nuts are used to attach the outboard to the shipping pallet. If alternate bolt lengths or replacement parts are required, use only Evinrude/Johnson Genuine Parts.

IMPORTANT: Standard screws offered by local merchants may not provide the high strength required for outboard installations.

OUTBOARD INSTALLATION


Transom Measuring and Drilling

Hull Centerline

Use the chines of the boat as reference points to locate the centerline of the boat transom.

Use a straightedge to draw a line connecting the port and starboard chines.

Use a framing square to accurately place a vertical line on the transom. The centerline of the hull should be in line with the keel, and perpendicular to the midpoint of the line connecting the chines.

- 1. Chine
- 2. Strake
- Keel
- Hull centerline

Dual-Outboard Centerlines

The following table lists standard ABYC centerline spacing between outboards in dual installations:

2 and 3 cylinder	22 in. (559 mm)
V4 and V6	26 in. (660 mm)

Some applications may require changes in this dimension to avoid strakes, to adjust for transom height, or for performance reasons. Best performance can be determined only through testing. Refer to boat manufacturer for recommendations.

If the standard spacing does not allow full steering travel in a particular installation, it may be necessary to increase the spacing.

IMPORTANT: Some steering systems may require additional spacing. Refer to steering system manufacturer for recommendations.

The top edge of the transom should be more than twice the width of the dual-outboard centerline spacing dimension. Bracket installations may not require this consideration.

Measure the transom for dual-outboard spacing after the centerline of the hull is established.

Divide the spacing dimension by two. Use the resulting number to space the outboard centerlines from the hull centerline.

EXAMPLE: A 26 in. (660 mm) dual-outboard spacing would result in two outboard centerlines, each 13 in. (330 mm) from the hull centerline.

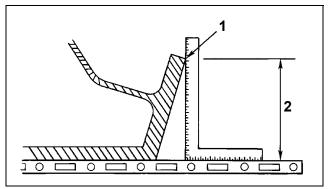
- Port centerline
- Hull centerline
- Starboard centerline

Transom Height

Make sure the transom height matches the length of the outboard to be installed.

DRC5527B

- A 19 to 21 in. (48.3 to 53.3 cm) transom height uses a 20 in. (50.8 cm) shaft outboard.
- The shaft length of the outboard being installed should come close to matching the transom height of the boat.


Determine transom height by measuring from the top edge of the transom, along the centerline.

For dual-outboard installations, transom height should be measured at the outboard centerlines.

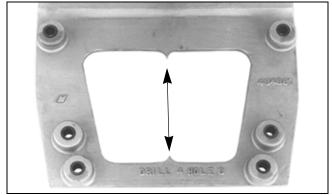
Use a straightedge as a reference to extend the bottom of the boat.

OUTBOARD INSTALLATION

Position the straightedge along centerline. The distance from the top edge of the straightedge to the top edge of the transom is the actual transom height.

- Top edge of transom
- 2. Actual transom height

DR5541


Transom Drilling Locations

75-90 HP. ALL MODELS 40-60 HP. POWER TRIM MODELS

All models use the standard ABYC 4-Bolt mounting pattern.

Use Transom drill fixture. P/N 434367 or P/N 385368, as a guide for correct hole placement. If drill fixture is unavailable, refer to Drilling and Hardware Diagrams on p. 48 for measurements.

Position drill fixture on top of transom or bracket and align indicator points with centerline.

Transom drill fixture P/N 434367 (heavy duty)

24496

The indicators are affected by the squareness of the top edge of the transom. If either side of the fixture must be raised more than 1/4 in. (6 mm) above the transom's top surface to make both indicators align, the transom must be modified.

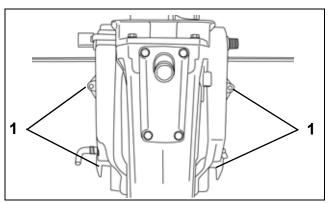
IMPORTANT: DO NOT assume that the top edge of the transom is straight. Position the drill fixture based on measurements aligning it to the bottom of the hull.

NOTICE Maintain at least 1.75 in. (45 mm) of transom surface above the top mounting bolts.

Before drilling any mounting holes:

- Make sure the hole locations provide enough clearance for mounting bolts and washers.
- Check the inside area of the transom for obstructions.
- Check transom height(s) at centerlines.

Drill four ½ in. (13 mm) mounting holes in the appropriate locations.

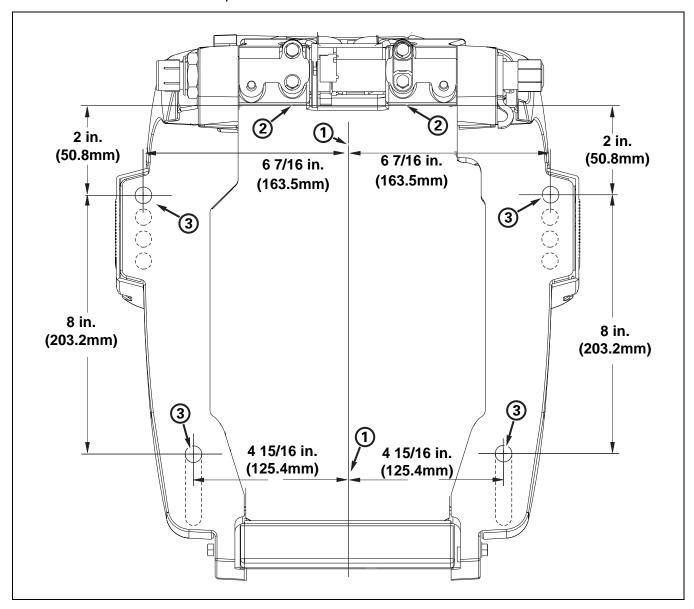

IMPORTANT: Be sure to drill the required holes perpendicular to transom surface.

40-65 HP, MANUAL TILT MODELS

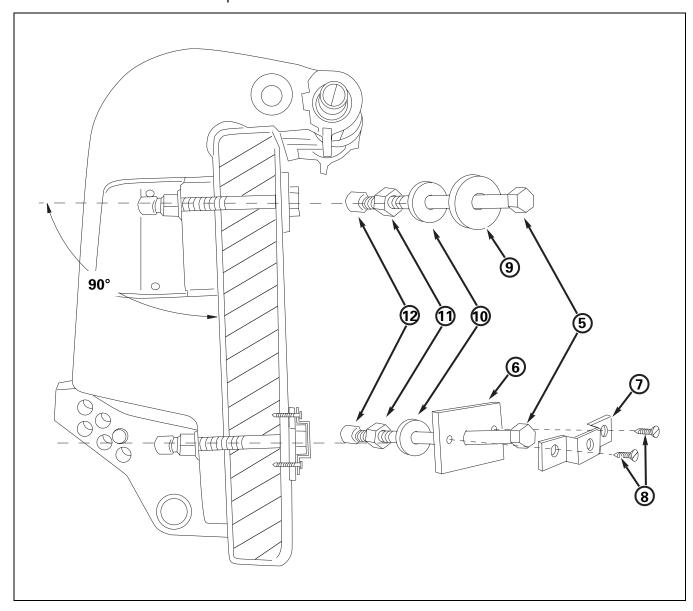
Center the outboard on the transom (or mounting bracket) and tighten clamp screws by hand.

Use each stern bracket's mounting holes as a guide to drill holes through the transom.

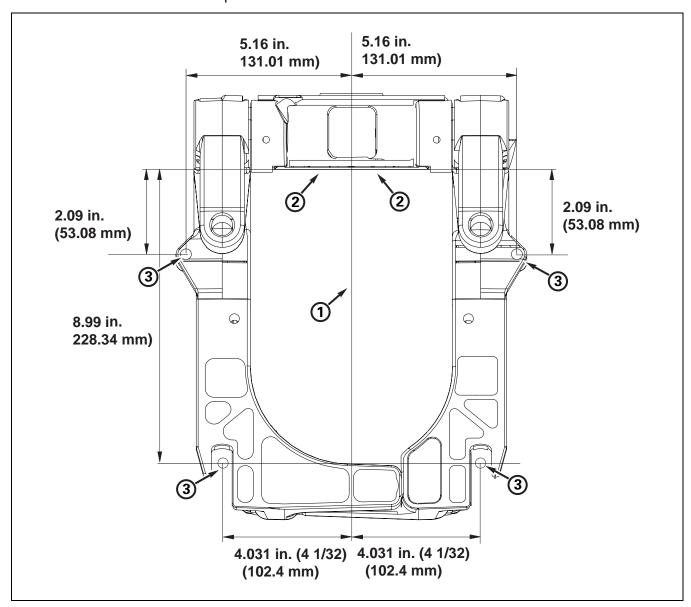
- 40–65 HP models require four 5/16 in. (8 mm) holes
- 25–30 HP models require two 5/16 in. (8 mm) holes

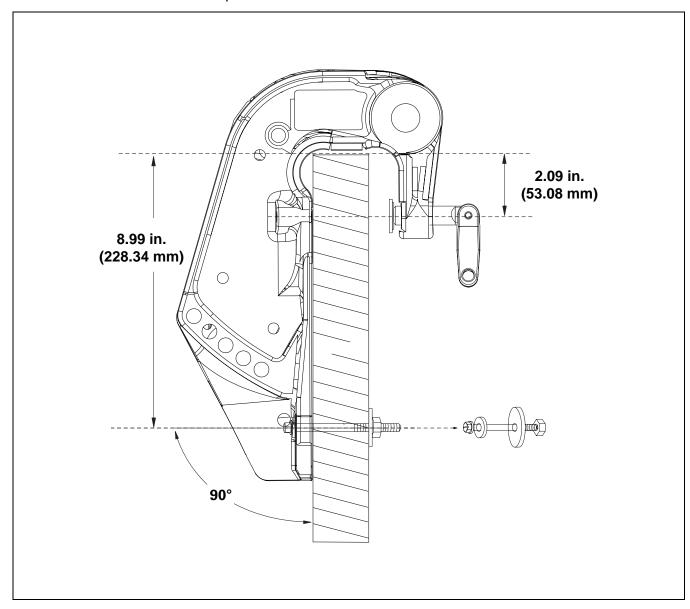


40 - 65 HP Models


002215

Drilling and Hardware Diagrams


75-90 HP, ALL MODELS; 40-60 HP, POWER TRIM MODELS


		Quantity	
1. Center of Transom	5. Bolt *	4	* Choose from the following bolt sizes:
2. Top of Transom	6. 318272 Plate	2	327053 3 in. (76 mm)
3. 1/2" Bolt Hole Locations	7. 318273 Retainer	2	318573 3 1/2 in. (89 mm)
4. Outside of Transom	8. 319886 Screw	4	336676 4 1/2 in. (114 mm)
	9. 307238 Washer	2	331578 5 in. (127 mm)
	10. 320248 Washer	4	354101 6 in. (152 mm)
	11. 313623 Nut	4	354102 7 in. (178 mm)
	12 . 318572 Cap	4	354103 8 in. (203 mm)
			354104 9 in. (229 mm)

40-65 HP, MANUAL TILT MODELS

- 1. Center of Transom
- 2. Top of Transom
- 3. 5/16" Bolt Hole Locations

OUTBOARD INSTALLATION

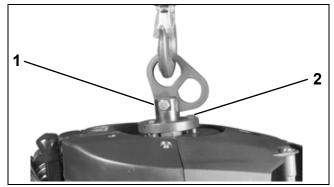
Lifting the Outboard

Lifting Fixtures

A

WARNING

To avoid personal injury, make sure the lifting capacity of the hoist is at least twice the weight of the outboard.


DO NOT allow the lift hook or chain from the hoist to come in contact with any part of the engine during lifting.

Remove shipping carton.

Use correct Lifting Fixture to lift outboard:

Model	Lifting Fixture
40–90 HP	P/N 396748 with
	1 1/8 in. screws

With recoil starter removed, Place lifting tool on flywheel and seat the three screws completely. Refer to **RECOIL STARTER REMOVAL** on p. 399.

Lifting fixture
 1 1/8 in screws

002098

NOTICE Use only the 1 1/8 in. (short) screws, P/N 398067, included with the tool to avoid damage to electronic components under the flywheel.

Fasten appropriate chain hook to eye of tool. Carefully hoist outboard with chain and unbolt outboard mounting brackets from frame.

Steering Systems

Mechanical Cables

All Evinrude outboards equipped with tilt tubes are compatible with mechanical steering systems that meet ABYC Standard P-17. Single-cable mechanical steering systems can be used on single or dual-outboard installations if an ABYC-approved steering link is used.

Dual-cable mechanical steering helps provide firm steering control at high speeds.

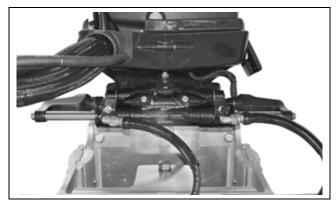
Extend the steering cable and lubricate the inner core before installation.

ABYC-approved Mechanical Steering Cable

5873

IMPORTANT: Install steering cable through tilt tube **before** mounting outboard on transom. Tighten nut securely.

WARNING


DO NOT use cable over pulley steering on 40 HP and larger outboards.

OUTBOARD INSTALLATION

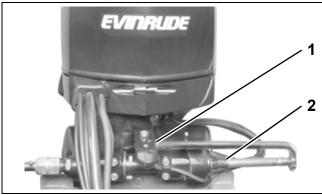
Manual Hydraulic Steering

Manual hydraulic steering systems use hydraulic fluid to transfer motion and load from the helm to the outboard.

Use only a hydraulic steering system designed for the specific application. Refer to the steering system manufacturer's specifications for recommended applications.

TYPICAL Manual Hydraulic Steering

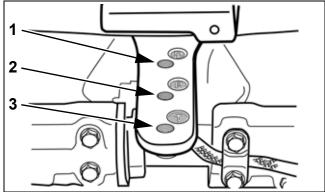
00494


IMPORTANT: Some hydraulic steering systems require additional centerline spacing in dual-out-board installations. Refer to steering system manufacturer's recommendations and to **Dual-Outboard Centerlines** on p. 46.

Drag Links

Use the correct drag link to allow full steering travel:

Model	Drag Link
75–90 HP	P/N 175125
40-60 HP	P/N 173699


Install cable wiper nut on tilt tube and connect drag link to the correct location on the steering arm. For single motor, single cable applications, the drag link should be installed in the rear hole.

1. Drag link connection

2. Wiper nut

002097

- . Rear Location (D)-Steering drag link connection
- Middle Location (P)-Power steering connection (Refer to manufacturer's instructions for hydraulic steering systems.)
- 3. Front Location (T)—Bar connection (multiple outboard installations)

DRC7162

OUTBOARD INSTALLATION

Outboard Mounting

IMPORTANT: Some rigging components, such as steering cables, must be fitted to the outboard before the outboard is mounted to the transom. Determine what equipment will be installed before mounting.

Mounting Height

Boat performance depends on outboard mounting height.

Generally, the anti-ventilation plate of the gearcase should align with the bottom of the hull. Conventional V-hulls often perform well with the antiventilation plate approximately 1 in. (25 mm) above the bottom of the hull.

Boats that exceed 50 MPH may benefit from higher outboard heights. Consult the boat manufacturer for specific outboard mounting height information for a particular hull.

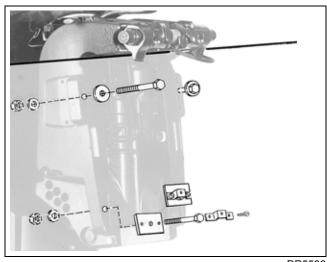
Test outboard and boat performance at different heights until the best performance is achieved.

NOTICE Be sure that outboard water pressure is not adversely affected by the mounting height of the outboard.

Mounting Bolt Installation

IMPORTANT: Use a marine sealant rated for above or below waterline use. RTV silicone is not approved for below waterline use. Polyurethane sealants are not easily removed and may damage outboard or boat mounting surfaces.

Apply marine sealer under hex heads of bolts, on the mounting plates, and to the bolt shanks.



0078A

75-90 HP, ALL MODELS 40-60 HP, POWER TRIM MODELS

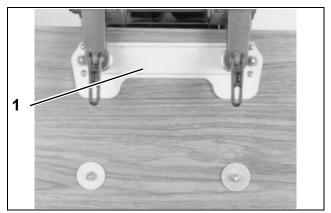
Assemble transom mounting plates on mounting bolts.

Install the mounting bolts through the transom from the inside of the boat.

DR5536

Position the square aluminum transom mounting plates (when applicable) so the retainer holes are horizontal.

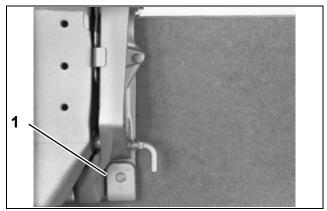
Position hex head of bolt with flats toward holes in the mounting plates. Install retainer over hex head of the bolt and secure it with screws provided.


Install all washers and nuts. Tighten nuts and bolts to a torque of 40 ft. lbs. (54 N·m).

WARNING

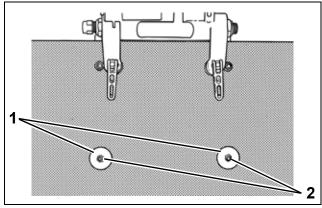
If either side of the transom deforms or cracks when the bolts are tightened to their recommended torque, the transom construction may not be adequate or may be deteriorated. Structural failure of the transom could result in loss of boat control and injury to the occupants.

40-65 HP, MANUAL TILT MODELS


Manual tilt models require Transom Mounting Kit, P/N 394219. The kit includes a transom mounting plate and hardware for fastening outboard to transom.

1. Transom mounting plate

18961


The kit also includes clamp pads, P/N 315774, which must be used to secure mounting bolts in slots at the bottom of the outboard stern brackets.

1. Clamp pad

COB2505

Install the mounting bolts through the stern brackets and transom. Install round backing plates and locknuts onto bolts and tighten securely.

Round backing plates

2. Locknuts

DR26499

OUTBOARD RIGGING

OUTBOARD RIGGING

Common Practices - All Models

Control Cable Identification

IMPORTANT: Identify control cable function before rigging outboard.

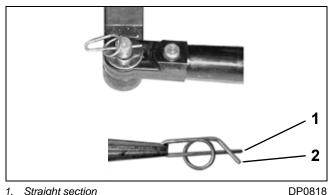
Identify each control cable:

 Put the control handle into NEUTRAL position. The throttle cable casing guide will retract completely and the shift cable casing guide will go to the midpoint of its travel.

- Shift cable casing guide extended to midpoint
- Throttle cable casing guide retracted

DP0811

Extend the control cables and lubricate them with Triple-Guard grease.


30501

Cable Retainer Clip Installation

When installing retainer clips on control arm linkage pins, clips should be locked and must not be bent or deformed.

For proper installation, review the following steps:

- Place washer on pin.
- Position retainer clip with straight section on the bottom and angled section on the top.
- Use long nose pliers to insert straight section of clip into linkage pin hole.

Straight section

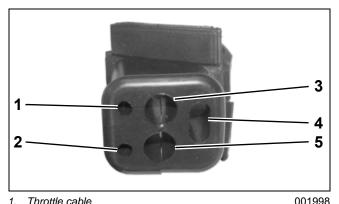
Angled section

DP0817

- Push the clip towards the hole while lifting on the curved end with the pliers.
- Be sure retainer clip fully engages the pin.
- Lock the retainer by moving the angled section behind the straight section.

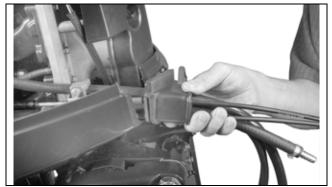
Locked Retainer Clip Angled section behind straight section

DP0817a


Cable, Hose, and Wire Routing

CAUTION

To prevent accidental starting while servicing, disconnect the battery cables at the battery. Twist and remove all spark plug leads.

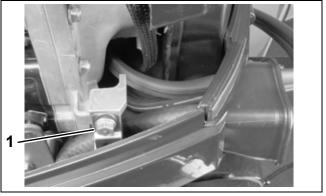

Refer to Control Cable Identification on p. 56.

Apply soapy water to the inside surfaces of grommet and install cables and fuel line as shown:

- Throttle cable
- 2. Shift cable
- Main wiring harness
- 4. Battery cable
- Fuel line

Place the grommet into position in the lower engine cover.

002104

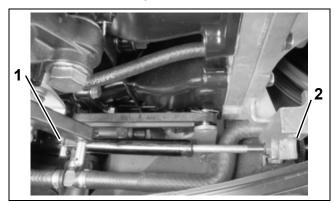

When grommet is in place and all cables have been installed, tighten a tie strap around the outside of the grommet to form a watertight seal around the cables.

NOTICE After installation, make sure there is enough clearance for all cables to avoid binding or chafing through all engine steering and tilting angles.

Control Cable Installation

Refer to Control Cable Identification on p. 56.

Remove cable retainer from anchor block. Apply *Triple-Guard* grease to both anchor block pockets.


Cable retainer

002099

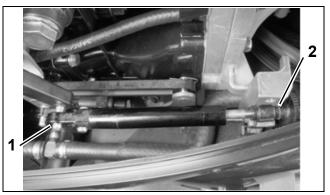
IMPORTANT: DO NOT secure cables to throttle and shift lever pins until all cables, wires, and hoses have been routed and grommet has been installed in the lower engine cover.

Make sure the remote control is in NEUTRAL, and throttle is in the IDLE position.

Pull firmly on shift cable casing to remove slack. With outboard in NEUTRAL, place the cable trunnion into the lower anchor pocket. Adjust the trunnion nut so the casing fits onto the shift lever pin.

Shift lever pin

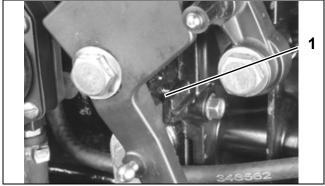
Trunnion nut


002100

OUTBOARD RIGGING

If there are not enough threads on the shift cable for the adjustment, or if the gearcase does not shift fully into FORWARD or REVERSE, refer to **SHIFT ROD ADJUSTMENT** on p. 336, or **SHIFT ROD ADJUSTMENT** on p. 359.

With remote control lever in NEUTRAL, pull firmly on throttle cable casing to remove slack.


With engine throttle lever against stop, place the cable trunnion into the upper anchor pocket and adjust the trunnion nut so the casing fits onto the throttle lever pin.

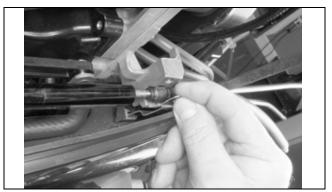
1. Throttle lever pin

Trunnion nut

002101

1. Throttle lever stop – 3 Cylinder models

005111


Throttle lever stop – 2 Cylinder models

005114

IMPORTANT: Move control handle to FOR-WARD and pull back slowly to NEUTRAL. Make sure the engine throttle lever is against the stop. If not, remove slack by adjusting cable trunnion.

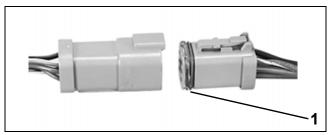
After grommet has been installed in lower engine cover, install the washers and retainer clips on the throttle and shift lever pins. Refer to **Cable Retainer Clip Installation** on p. 56.


Install cable retainer and screw. Tighten screw to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

002103

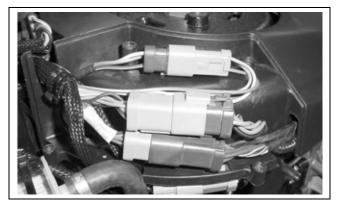
SystemCheck Harness Connections

Place the wiring harness through notch in lower motor cover and route to the recess in the flywheel cover. Secure the cable with a tie strap as shown:

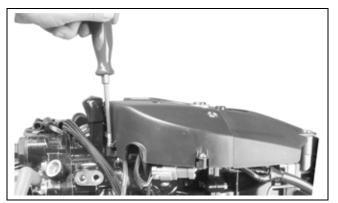


1. Recess

2. Tie strap


002011

Before installing electrical connectors, check that the seal is in place. Clean off any dirt from connectors. Apply a light coat of *Electrical Grease* to the seal only. DO NOT fill connectors with *Electrical Grease*.


1. Seal 42079A

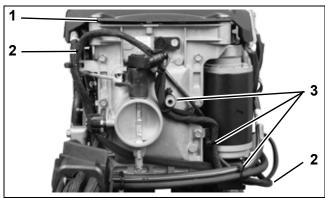
Arrange connectors in flywheel cover.

001999

Install electrical cover and secure with screws.

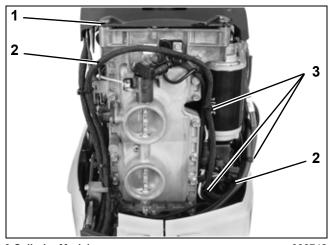
002102

NOTICE BE SURE all harnesses and wires are not pinched, cannot contact flywheel, and do not interfere with moving throttle or shift linkages.


I-Command Network Connections

If the outboard will be used with *I-Command*, or other *NMEA 2000* compliant CANbus instruments, use the following connections to supply information to the network:

Remove lower motor covers. Remove air silencer.

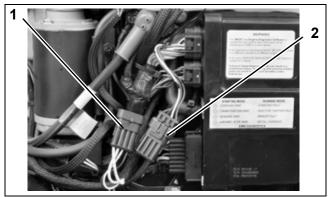

Route *I-Command* Engine Interface Cable around the front of the throttle body, following the path of the TPS wiring, and behind the battery cable. Loosely install tie straps as shown.

NOTICE To prevent wire chafing, harness must be routed below the flywheel cover.

2 Cylinder Models

- 1. Flywheel cover
- 2. Harness routing
- 3. Tie straps

3 Cylinder Models

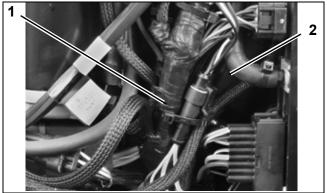

- Flywheel cover
- 2. Harness routing
- 3. Tie straps

006742

006736

OUTBOARD RIGGING

Connect the *I-Command* Engine Interface Cable to the *EMM* CANbus connector.

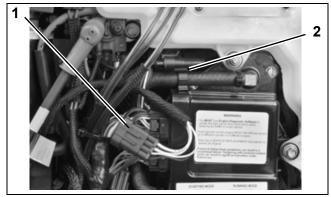


- 1. I-Command network connector
- 2. EMM CANbus connector

006735

2 CYLINDER MODELS

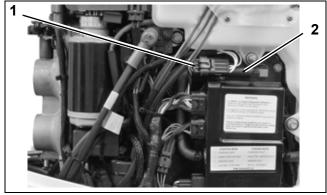
To prevent interference with engine cover latch, bundle excess wiring behind *EMM* cooling water hose. Secure *I-Command* connectors to back side of engine harness with tie strap.



- 1. Engine harness
- EMM cooling water hose

006738

3 CYLINDER MODELS


EMM CANbus connector cap is clipped to *EMM* cooling water hose. Remove clip from cap and install on *I-Command* harness connector.

- 1. Canbus harness connector
- 2. EMM CANbus connector cap and clip

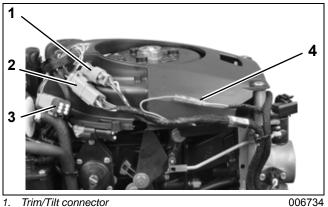
006743

Install clip and connector to hose.

- 1. CANbus connectors
- 2. EMM cooling water hose

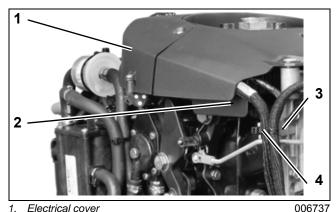
006744

ALL MODELS

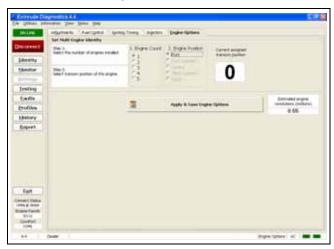

Adjust harness routing as needed and secure with tie straps.

Use an *I-Command* Ignition and Trim Harness to connect the outboard to the key switch and trim/tilt control. Seal unused *SystemCheck* connector with 6-Pin Connector Seal, P/N 586076.

INSTALLATION AND PREDELIVERY **OUTBOARD RIGGING**


Use Evinrude Diagnostics software to adjust network settings in the EMM. From the Settings screen, select Engine Options.

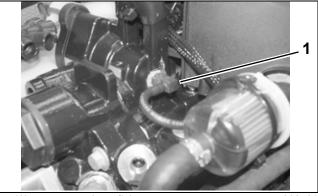
If connecting to an existing *Deutsch*-style *I-Com*mand network, connect the purple wires between the I-Command Ignition and Trim Harness and the I-Command Engine Interface Cable. This connection supplies power to the network when the key switch is on. Newer, quick connect-style networks do not use this connection.



- Trim/Tilt connector
- 2. CANbus Ignition connector
- SystemCheck connector (with seal)
- Deutsch-style harness power connector

Route *I-Command* Ignition Harness through wire channel in flywheel cover. Install electrical cover. Make sure both harnesses are in front of the tab and tighten with tie strap.

- Electrical cover
- Wire channel
- 3. Tab
- Tie strap


Engine Options Screen

008093

Water Pressure Gauge

To display engine water pressure, install a water pressure hose fitting in the cylinder block as shown.

Use Pipe Sealant with Teflon on the threads of the hose fitting. Refer to installation instructions supplied with gauge.

Water pressure hose fitting

002461

For an I-Command water pressure display, several water pressure sensor kits are available. Refer to the Evinrude/Johnson Genuine Parts and Accessories catalog.

FUEL AND OIL PRIMING

Fuel Requirements

A

WARNING

Gasoline is extremely flammable and highly explosive under certain conditions. Improper handling of fuel could result in property damage, serious injury or death.

Always turn off the outboard before fueling.

Never permit anyone other than an adult to refill the fuel tank.

Do not fill the fuel tank all the way to the top or fuel may overflow when it expands due to heating by the sun.

Remove portable fuel tanks from the boat before fueling.

Always wipe off any fuel spillage.

Do not smoke, allow open flames or sparks, or use electrical devices such as cellular phones in the vicinity of a fuel leak or while fueling.

Minimum Octane

Evinrude/Johnson outboards are certified to operate on unleaded automotive gasoline with an octane rating equal to or higher than:

- 87 (R+M)/2 AKI, or
- 90 RON

Use unleaded gasoline that contains methyl tertiary butyl ether (MTBE) **ONLY** if the MTBE content does not exceed 15% by volume.

Use alcohol-extended fuels **ONLY** if the alcohol content does not exceed:

- 10% ethanol by volume
- 5% methanol with 5% cosolvents by volume

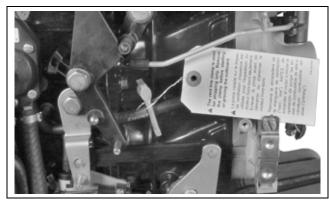
When using alcohol-extended fuels, be aware of the following:

- The boat's fuel system may have different requirements regarding the use of alcohol fuels. Refer to the boat's owner guide.
- Alcohol attracts and holds moisture that can cause corrosion of metallic parts in the fuel system.
- Alcohol blended fuel can cause engine performance problems.
- All parts of the fuel system should be inspected frequently and replaced if signs of deterioration or fuel leakage are found. Inspect at least annually.

IMPORTANT: Always use fresh gasoline. Gasoline will oxidize, resulting in loss of octane and volatile compounds, as well as the production of gum and varnish deposits which can damage the outboard.

Additives

IMPORTANT: The only fuel additives approved for use in *Evinrude* outboards are $2+4^{\circ}$ fuel conditioner and *Evinrude/Johnson* Fuel System Cleaner. **Use of other fuel additives can result in poor performance or engine damage.**


Evinrude/Johnson 2+4 Fuel Conditioner will help prevent gum and varnish deposits from forming in fuel system components and will remove moisture from the fuel system. It can be used continuously and should be used during any period when the outboard is not being operated on a regular basis. Its use will reduce spark plug fouling, fuel system icing, and fuel system component deterioration.

Evinrude/Johnson Fuel System Cleaner will help keep fuel injectors in optimal operating condition.

Fuel System Priming

Vent Line Clamp

Federal Regulations require that all outboards with a fuel vapor separator must be shipped with a vent line clamp installed. This clamp must be removed before priming the fuel system or starting the outboard for the first time.

002552

IMPORTANT: Failure to remove the clamp may cause fuel starvation and poor running qualities.

Priming the Fuel System

A

WARNING

Fuel vapors are highly flammable. Perform the following procedure in a well ventilated area. Extinguish all smoking materials and make certain no ignition sources are present.

REMOTE MODELS

Insert the fuel supply hose from the fuel tank into a suitable container. Squeeze the fuel primer bulb or activate the boat-mounted electric fuel primer until fuel flows from the fuel hose.

Once fuel flow is observed, connect fuel supply hose from fuel tank to hose fitting on outboard. Secure hose with *Oetiker* clamp.

TILLER MODELS

Connect the fuel hose connector to the quick connect fitting on the outboard.

ALL MODELS

Use the primer to fill the vapor separator.

The high-pressure fuel circuits and injectors will prime as the outboard is cranked with the starter.

Observe all fuel lines, both in the boat and on the outboard. Repair any fuel leaks.

Λ

WARNING

Failure to check for fuel leaks could allow a leak to go undetected, resulting in fire or explosion and may cause personal injury or property damage.

Oil Requirements

Recommended Lubricants

Evinrude/Johnson XD100, XD50, or XD30 outboard oils are recommended for use in Evinrude E-TEC outboards. If these oils are not available, you must use a TC-W3 certified oil.

Evinrude/Johnson XD100 outboard oil is highly recommended for all conditions and applications.

Engine Lubricant Below 32°F (0°C)

If the outboard will be operated in temperatures below freezing (32°F, 0°C), use *Evinrude/Johnson XD100*.

IMPORTANT: For new outboards, test low oil warning before filling oil tank.

Turn key switch to ON. The engine monitor warning display should show "LOW OIL."

Add enough oil to raise level to at least one-quarter capacity.

The "LOW OIL" warning should not display.

NOTICE Failure to follow these recommendations could void the outboard warranty if a lubrication-related failure occurs.

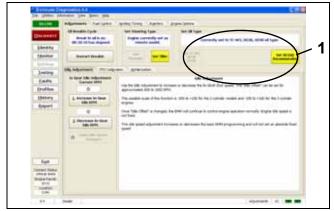
FUEL AND OIL PRIMING

Oil Injection Rate

The Engine Management Module (*EMM*) controls the oil injection rate based on engine RPM. This rate can be adjusted for the type of oil being used, and also for powerhead break-in. Use *Evinrude Diagnostics* software to access these features.

The Set Oil Type option controls the injection rate for the oil being used and typical operating conditions.

The TC-W3 oil type setting is the standard setting for all outboards. Set TC-W3 for:


- Operation with all TC-W3 outboard oils including XD30, XD50, or XD100.
- · Applications requiring maximum lubrication.
- Extreme applications (commercial or harsh conditions, racing or other high performance operation).
- Use this setting with XD100 outboard oil in extreme applications

The XD100 setting provides an option to run the outboard at a reduced oil injection rate. This setting REQUIRES the use of Evinrude XD100 outboard lubricant and is not recommended for all applications.

IMPORTANT: The *XD100* setting is not available on all models.

Use the *XD100* setting for:

- Conventional use (runabouts, cruisers)
- Moderate applications

1. Oil control setting

008084

A

CAUTION

Running an *Evinrude E-TEC* outboard on other grades of oil while set to the *XD100* oil ratio will result in increased engine wear and shortened outboard life.

Powerhead oil programming labels are provided to identify *EMM* oil programming. Install the correct label to alert user to specific oil requirements.

 Evinrude/Johnson XD30 outboard lubricant (TC-W3) YELLOW label 002507

 Evinrude/Johnson XD100 outboard lubricant (Premium) BLUE label (Installed)

An *XD100* Outboard Oil Decal, P/N 352369, is available to label boats equipped with outboards that have been programmed for the reduced oil injection ratio.

IMPORTANT

This outboard has been programmed for the use of Evinrude[®]/Johnson[®] XD100[™] outboard oil ONLY. Failure to use Evinrude/Johnson XD100 outboard oil may harm engine performance and shorten engine life.

EVINRUDE.COM

XD100 Outboard Oil Decal

P/N 352369

004522

Install decals in a highly visible location, such as one of the following:

- · Dashboard/deck of boat, next to key switch
- Deck of boat, next to the remote oil fill
- Deck of boat, next to oil tank assembly
- · Oil tank cover
- Cover of oil tank compartment
- · Attach to oil tank or oil fill cap.

IMPORTANT: Make sure the engine label and boat decals match *EMM* programming.

Break-In Oiling

IMPORTANT: DO NOT add oil in the fuel tank on *Evinrude E-TEC* models.

The Engine Management Module (*EMM*) will automatically supply extra oil to the engine as follows:

• 40 – 90 HP: First two hours above 2000 RPM

Follow these steps for outboard set-up:

- Use *Evinrude Diagnostics* software to make sure the break-in program has been started.
- The oil tank should be filled and the oil level marked for reference.

NOTICE The operator must monitor the oil tank level to confirm oil consumption. This may require several hours of operation above idle.

Oil Supply Priming

▲ WARNING

Always use caution while working around machinery with moving parts. The following set-up procedures require running tests that are performed with the outboard's motor cover removed.

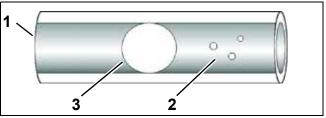
Use *Evinrude Diagnostics* software to make sure the *EMM* is programmed for the type of oil being used.

Start the outboard and use the oil priming function in the software for a minimum of 90 seconds to make sure the system is completely primed.

Dynamic Tests Screen

1. Prime Oil button

008083


Observe oil flow through the oil distribution hoses.

1. Oil distribution hoses

007997

Small bubbles are acceptable. Large bubbles must be eliminated through continued priming.

- Oil distribution hose
 Small bubbles
- 3. Large bubbles

004398

IMPORTANT: All clear "blue" oil distribution hoses on the powerhead should fill with oil as the air is purged from the lines.

Repair any fuel or oil leaks.

The oiling system can also be primed using the Self-Winterizing feature if diagnostic software is not available. Refer to **STORAGE** on p. 91.

BEFORE START-UP

BEFORE START-UP

Gearcase Lubricant

With outboard vertical, check the gearcase lubricant level:

- Remove the lubricant level plug. Lubricant must be even with the bottom of the threaded hole.
- A clean tie strap can be used as a "dip stick" if the lubricant level is not obvious.
- Add HPF PRO gearcase lubricant as needed.

1. Gearcase lubricant level

000072

Oil Level

Make sure oil tank contains an adequate supply of the correct lubricant for the outboard and that the LOW OIL warning has been tested. Refer to **Oil Requirements** on p. 63.

When starting the outboard for the first time, refer to **Oil Supply Priming** on p. 65.

Trim and Tilt Fluid

CAUTION

Correct fluid level must be maintained to ensure operation of the impact protection built into the unit.

Make sure trim and tilt reservoir is full before running outboard:

- Tilt the outboard and engage the tilt support.
- Remove filler cap and check fluid level.
- Single Ram System—Add Evinrude/Johnson Biodegradable TNT Fluid, as needed, to bring level to the bottom of the fill plug threads.

Single Ram System, 75 - 130 HP

008017

Single Ram System, 15 - 60 HP

008018

Install the filler cap and tighten to a torque of 45 to 55 in. lbs. (5 to 6 N·m).

- Disengage tilt support.
- Cycle the unit at least five complete cycles to purge all air from the system. When cycling the unit, hold the trim switch ON an additional 5 to 10 seconds after the unit reaches the end of its travel before activating the switch in the opposite direction.

RUNNING CHECKS

A

DANGER

DO NOT run the engine indoors or without adequate ventilation or permit exhaust fumes to accumulate in confined areas. Engine exhaust contains carbon monoxide which, if inhaled, can cause serious brain damage or death.

A

WARNING

Contact with a rotating propeller is likely to result in serious injury or death. Assure the engine and prop area is clear of people and objects before starting engine or operating boat. Do not allow anyone near a propeller, even when the engine is off. Blades can be sharp and the propeller can continue to turn even after the engine is off.

CAUTION

DO NOT run outboard without a water supply to the outboard's cooling system. Cooling system and/or powerhead damage could occur.

Engine Monitoring System

Attach emergency stop lanyard.

Turn key switch to ON. Warning horn should sound for 1/2 second.

All *SystemCheck* warning lights should turn on at the same time, then turn off one at a time.

Fuel System

Perform running checks of the fuel system by following these steps:

- Squeeze fuel primer bulb until hard or activate electric primer. Observe all fuel hoses and connections. Repair any leaks.
- Start outboard. Inspect all hoses and connections. Repair any leaks or misrouted hoses immediately.

Emergency Stop / Key Switch

Check emergency stop function. With outboard running at IDLE, pull safety lanyard from emergency stop switch. Outboard must stop immediately.

Remote Control Operation

Make sure that control can be easily moved into all gear and throttle settings. Do not shift remote control when outboard is not running.

Start-In-Gear Prevention

WARNING

Make certain that the starter will not operate when the outboard is in gear. The start-in-gear prevention feature is required by the United States Coast Guard to help prevent personal injuries.

Start outboard and shift to FORWARD.

Turn outboard OFF while control is in FORWARD.

Try to restart the outboard. Outboard should not start.

Shift back to NEUTRAL and restart outboard.

Shift to REVERSE. Turn outboard OFF while control is in REVERSE.

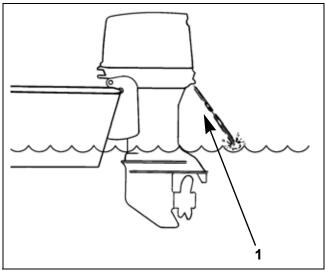
Try to restart the outboard. Outboard should not start.

Tachometer Pulse Setting (SystemCheck)

Confirm accuracy of tachometer reading.

 Adjust dial on back of tachometer to required setting (the outboard should not be running).

Outboard Model	Tachometer Setting
40–90 HP	6 Pulse or 12 Pole


RUNNING CHECKS

I-Command Set up

Complete basic set up of *I-Command* gauges. Configure engine and fuel tank, set fuel tank capacity etc. Refer to *I-Command* User's Guide.

Water Pump Overboard Indicator

A steady stream of water should flow from the overboard indicator.

1. Water pump overboard indicator

DRC4952

Operating Temperature

An outboard run at idle speed should achieve a temperature based on the engine's thermostatic control. In general, the powerhead temperature should reach at least 104°F (40°C) after five minutes of idling. Check that the powerhead reaches idle temperature. Refer to **SERVICE SPECIFICA-TIONS** on p. 10.

Idle Speed

Make sure the outboard idles within the specified idle RPM range. If the outboard is run on a flushing device, the idle speed and quality may not be representative of actual in water use.

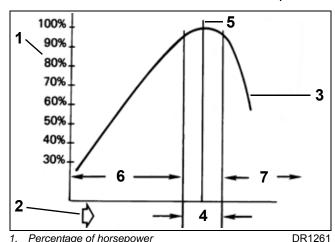
Break-In

Evinrude E-TEC outboards require no break in. When the outboard is delivered, refer the customer to the Oiling System information in the **Operator's Guide**.

The Engine Management Module (*EMM*) automatically supplies extra oil to the engine during the first two hours of operation, above 2000 RPM.

Use *Evinrude Diagnostics* software to confirm that the break-in program has been started. Refer to **OIL CONTROL SETTINGS** on p. 203.

PROPELLERS

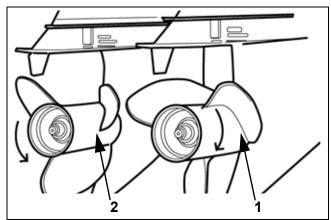

Propeller Selection

CAUTION

Selection of the wrong propeller could reduce engine service life, affect boat performance, or cause serious damage to the powerhead.

Water testing with various propeller designs and sizes is the best method of propeller selection.

The correct propeller, under normal load conditions, will allow the engine to run near the midpoint of the RPM operating range at full throttle. Refer to **SERVICE SPECIFICATIONS** on p. 10.



- Percentage of horsepower 1.
- Engine RPM
- 3. Horsepower curve
- 4. Full throttle operating range
- 5. Midpoint of full throttle operating range
- 6. Engine is overloaded at full throttle
- 7. Engine is overspeeding at full throttle

NOTICE If the propeller blades have too much pitch, the engine will operate below its normal range at full throttle. Power will be lost, and powerhead damage could occur. If the propeller blades have too little pitch, the engine will operate above its normal range and damage from overspeeding could occur.

When selecting a propeller, consider the follow-

- Use an accurate tachometer to determine the engine's full-throttle RPM.
- The outboard should be trimmed for top speed.
- Select a propeller that suits the customer's application and allows the engine to run near the midpoint of the full-throttle operating range when the boat has a normal load.
- Occasionally, one propeller will not cover a wide range of boat applications — water skiing to high speed performance boating. In such cases, it might be necessary to have a propeller for each situation.
- Refer to the Evinrude/Johnson Genuine Parts and Accessories Catalog for propeller styles and sizes.
- Right-hand propellers are considered standard rotation propellers. When propelling a boat forward, the propeller rotates in a right-hand (clockwise) direction as viewed from the rear.
- Left-hand propellers are considered counterrotation propellers. When propelling a boat forward, the propeller rotates in a left-hand (counterclockwise) direction as viewed from the rear.

- Right-hand rotation (clockwise)
- Left-hand rotation (counterclockwise)

000033

WARNING

For dual-outboard installations, always check to be sure propellers are installed on the correct engines before aggressively operating the boat.

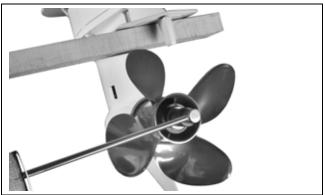
Propeller Hardware Installation

WARNING

To prevent accidental starting while servicing, twist and remove all spark plug leads.

IMPORTANT: Depending on propeller style, different thrust bushings, spacers, and cotter pin keepers are used. See the Evinrude/Johnson Genuine Parts and Accessories Catalog for correct propeller hardware.

Apply *Triple Guard* grease to the entire propeller shaft before installing the propeller.

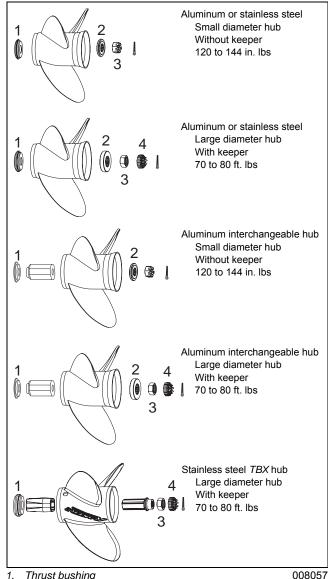

Install thrust bushing onto propeller shaft with taper of bushing matching taper of shaft.

If installing a propeller with an interchangeable hub, assemble the propeller following instructions provided with the propeller.

Align splines of propeller and shaft. Push propeller until seated on the thrust bushing.

Install the spacer over the propeller shaft splines.

Wedge a block of wood between propeller blade and the anti-ventilation plate.


001992

Install the propeller nut and tighten to a torque of:

- With Keeper 70 to 80 ft. lbs. (95 to 109 N·m)
- Without Keeper 120 to 144 in. lbs. (13.6 to 16.3 N·m)

If cotter pin holes in the nut (without keeper) and shaft do not align, tighten further. Do not loosen.

Install keeper (if applicable). Install new cotter pin.

- Thrust bushing
- 2. Spacer
- Propeller nut
- Keeper

IMPORTANT: After installation, make sure outboard is in NEUTRAL and carefully spin propeller. Propeller must turn freely and should not spin off center. If propeller appears to wobble, check for possible bent propeller shaft.

WATER TEST AND FINAL ADJUSTMENTS

An in the water test is required to make sure the outboard(s) and boat are rigged correctly, propeller selection is correct, and that all accessories function properly.

Pay special attention to the following, especially if the boat is repowered with new outboard(s):

- Engine mounting height
- Jack plate adjustment
- Correct propeller selection and WOT RPM
- Fuel system vacuum
- Engine water pressure/optional water screens

Make all needed adjustments or repairs and retest before delivery.

When ready for delivery, give all instruction sheets, operating instructions and user guides provided with accessories to the owner. Advise the owner of any special operation or maintenance information contained in the instructions.

IMPORTANT: Complete the Predelivery Checklist and obtain owner's signature at the time of delivery. The Predelivery Checklist must be kept on file for seven years.

Engine Mounting Height and Jack Plate Adjustment

Goals include:

- Engine RPM within the full throttle operating range
- Best acceleration and top speed
- No excessive ventilation while boat is coming onto plane.

Start with the engine lower on the transom. Make a test run, taking note of engine RPM, water pressure, trim level and boat speed. Refer to the **Water Pressure Chart** on p. 72.

Raise the engine or jack plate and repeat the process until the best acceleration and boat speed are achieved.

Fuel System Vacuum

Test fuel system vacuum. Refer to the appropriate service manual. The maximum inlet fuel vacuum should not exceed 4 in. Hg. (13.5 kPa) at the inlet to the fuel lift pump under any operating conditions (IDLE to WOT).

A higher vacuum indicates an excessive restriction in the fuel supply. Repair as needed.

Engine Water Pressure

Check engine water pressure. Confirm adequate water pressure at all engine speeds and in turns. Refer to the **Water Pressure Chart** on p. 72.

If water pressure falls below acceptable levels, adjust outboard alignment (multiple engine installations), or consider installing optional high flow water screens. Refer to appropriate parts catalog for available water screens.

WATER TEST AND FINAL ADJUSTMENTS

Water Pressure Chart

This chart lists typical water pressure readings for 2010 model outboards. Water pressure readings

may vary depending on water inlet screen type, hull design, set up, and operating conditions.

Model						RPM					
Wiodei	ldle	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500
40 – 65 HP	4-5 (27-34)	5-6 (34-41)	7-9 (48-62)	10-11 (68-75)	14-15 (96-103)	15-17 (103-117)	16-18 <i>(110-124)</i>	16-18 <i>(110-124)</i>	14-16 (96-110)	12-14 (82-96)	10-12 (68-82)
75 – 90 HP	5-6 (34-41)	10-11 (68-75)	12-14 (82-96)	15-17 (103-117)	16-18 <i>(110-124)</i>	16-18 <i>(110-124)</i>	13-15 (89-103)	15-17 (103-117)	16-18 <i>(110-124)</i>	19-21 (131-144)	20-22 (137-151)
115 – 130 HP 60° V4	5-6 (34-41)	9-10 (62-68)	12-14 (82-96)	15-17 (103-117)	18-20 (124-137)	20-21 (137-144)	20-22 (137-151)	21-23 (144-158)	21-23 (144-158)	21-23 (144-158)	21-23 (144-158)
150 – 200 HP 60° V6	4-5 (27-34)	9-11 (62-75)	14-16 (96-110)	17-19 (117-131	19-21 (131-144)	20-22 (137-151)	20-22 (137-151)	21-23 (144-158)	22-24 (151-165)	23-25 (158-172)	24-26 (165-179)
200 – 250 HP 90°V6 (3.3L)	3-5 (27-34)	7-9 (48-62)	8-10 (55-68)	9-11 (62-75)	10-12 (68-82)	11-13 (75-89)	12-14 (82-96)	13-15 (89-103)	14-16 (96-110)	15-17 (103-117)	16-18 <i>(110-124)</i>
250HO – 300 HP 90°V6 (3.4L)	4-6 (27-41)	7-11 (48-75)	9-12 (62-82)	10-14 (68-96)	12-15 (82-103)	14-16 (96-110)	15-18 <i>(103-124)</i>	16-19 <i>(110-131)</i>	18-20 (124-137)	18-25 (124-172)	20-30 (137-207)

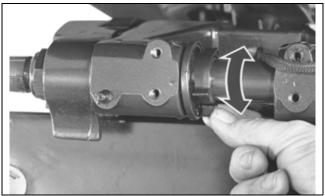
Note: Water pressure is listed in psi and in (kPa).

WATER TEST AND FINAL ADJUSTMENTS

Tilt Limit Switch Adjustment (75 – 90 HP)

A

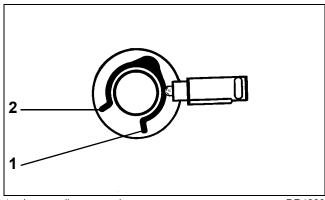
WARNING


If the outboard does not clear all boat parts when tilted fully or turned side to side, safety related parts could be damaged in the course of such outboard movement. Injuries could result from loss of boat control.

Adjust the tilt limit switch on all new outboard installations.

Check the clearance between outboard(s) and the boat's motor well and transom area. Tilt outboard(s) to highest point of clearance and turn the steering system lock to lock.

If the outboard contacts the boat's motor well when fully tilted, adjust the tilt limit cam to reduce full-tilt position.


NOTICE The tilt limit cam will not prevent the outboard from overriding the adjustment if the outboard is tilted manually.

DR3916

Place the outboard in normal operating position.

Rotate the LOWER adjustment tab UP to reduce the maximum tilt. Rotate the UPPER adjustment tab DOWN to increase the maximum tilt position.

Lower adjustment tab

DR4268

2. Upper adjustment tab

Check the adjustment by tilting the outboard fully.

Repeat this procedure until the tilt limit switch stops the outboard's upward travel before it contacts the motor well.

To prevent damage to equipment, provide additional motor well clearance when needed. Consider either changing the outboard mounting position or modifying the boat if the possibility for interference and damage exists.

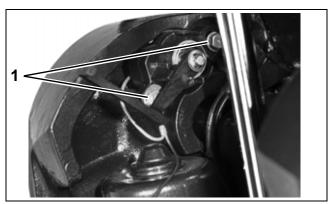
A

WARNING

Adjusting the tilt limit cam will NOT prevent the outboard from tilting fully and contacting the motor well if the gearcase hits an object at high speed. Such contact could damage the outboard and boat and injure boat occupants.

WATER TEST AND FINAL ADJUSTMENTS

Trim Sending Unit Adjustment (75 – 90 HP)


Tilt the outboard and engage the tilt support.

Temporarily install a thrust rod, P/N 436541, in the number 3 hole.

29072

Loosen the sending unit screws, to allow the sending unit to pivot.

1. Screws

27339

Disengage the tilt support. Lower the outboard against the thrust rod.

Observe the trim gauge. If the needle does not show center position, tilt the outboard up and adjust the sending unit by pivoting it up or down.

1. Needle at center position

000662

Lower the outboard against the thrust rod to check adjustment. Repeat adjustment, if necessary.

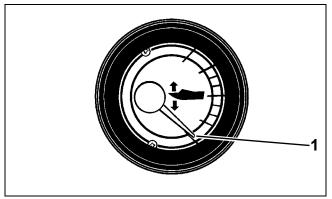
After adjustment is correct, tilt the outboard up, tighten the two sending unit screws, and remove the thrust rod.

Trim Limiter Rod

The trim limiter rod prevents excessive trim down.

As the engine is trimmed to the full down position, the bow of the boat goes deeper into the water.

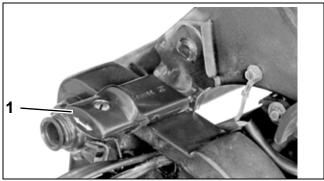
- If the trim limiter rod is left out, the bow could plow into the water causing the boat to "bow steer" resulting in a loss of control.
- If the trim limiter rod is set too far out, the propeller could ventilate, resulting in poor acceleration when the boat is coming onto plane.


Set the trim limiter rod to prevent excessive trim down and provide good acceleration. The trim limiter rod can be used to prevent the gearcase or spray deflector from contacting the transom.

▲ WARNING

When the outboard is returned to the customer, the trim limiter rod must be installed and in the same location as it was when the motor was brought in for service. Leaving the trim limiter rod out, or changing the adjustment, could allow the motor to unexpectedly trim in too far and cause loss of control.

Trim Sending Unit Adjustment (40 – 60 HP)


The sending unit eccentric cam must be adjusted so that the gauge needle is aligned with the lowest gauge mark with the outboard trimmed all the way DOWN.

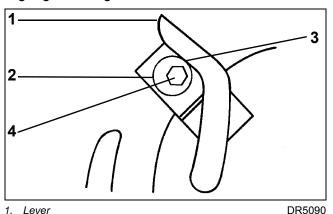
1. Lowest gauge mark

DR2827

Check if the gauge needle is above or below the lowest gauge mark. Tilt engine UP and engage trailering lock.

1. Trailering lock

18954


▲ WARNING

To avoid personal injury, do not adjust the sending unit eccentric cam while the engine is being tilted.

When the outboard is trimmed all the way DOWN, the sending unit lever touches the eccentric cam just forward of the top of the cam at the contact point.

Loosen cam screw and rotate eccentric cam to adjust full down gauge position:

- If the needle was above the lowest mark, move the thick part of the cam TOWARD the contact point. Tighten the screw, and recheck the gauge reading.
- If the needle was below the lowest mark, move the thick part of the cam AWAY from the contact point. Tighten the screw, and recheck the gauge reading.

- Lever
 Eccentric cam
- 3. Contact point
- 4. Cam screw

Tighten eccentric cam retaining screw and check needle position at full trim DOWN.

WATER TEST AND FINAL ADJUSTMENTS

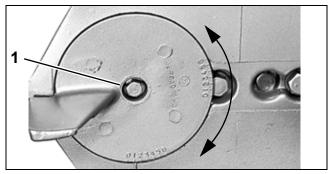
Trim Tab Adjustment

A

WARNING

Improper trim tab adjustment can cause difficult steering and loss of control.

A propeller will generate steering torque when the propeller shaft is not running parallel to the water's surface. The trim tab is adjustable to compensate for this steering torque.


IMPORTANT: A single trim tab adjustment will relieve steering effort under only one set of speed, outboard angle and load conditions. No single adjustment can relieve steering effort under all conditions.

If the boat pulls to the left or right when its load is evenly distributed, adjust the trim tab as follows:

- With the remote control in NEUTRAL and the engine OFF, loosen the trim tab screw.
- If the boat pulled to the right, move rear of the trim tab slightly to the right.
- If the boat pulled to the left, move rear of the trim tab slightly to the left.

Tighten the trim tab screw as follows:

• 40 - 90 HP: 35 to 40 ft. lbs. (47 to 54 N·m).

1. Trim tab screw

COA3663

Test the boat and, if needed, repeat the procedure until steering effort is as equal as possible.

Outboards with High Transom Heights

The trim tab may be above the surface of the water when the outboard is trimmed out. Steering effort might increase. Lower the trim setting to submerge the trim tab and to reduce steering effort.

Dual Standard Rotation Outboards

Move both trim tabs equally and in the same direction.

Dual Outboards, One Counter and One Standard Rotation

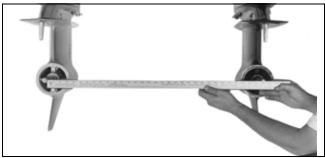
Set both trim tabs to the center position.

WATER TEST AND FINAL ADJUSTMENTS

Dual-Outboard Alignment

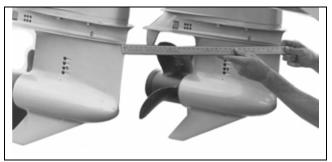
Dual outboards must be connected with a tie bar and adjusted to align the outboards for correct water flow to the gearcases and propellers.

Incorrect outboard alignment could cause one or more of the following:


- Propeller ventilation
- Reduction of top speed
- Improper boat tracking
- Engine overheat and powerhead damage

Follow the instructions provided by the tie-bar manufacturer for tie bar installation and adjustment.

Measure Alignment


The "toe-in" (gearcase leading edges closer together than propeller shaft centers) or "toe-out" (gearcase leading edges farther apart than propeller shaft centers) is determined as follows:

- Position outboards straight with the anti-ventilation plates parallel with the bottom of the boat.
- Measure between propeller shaft centers.

6365

Measure between leading edges of gearcase.

6340

Alignment Adjustment

Various boat/motor combinations respond differently to dual-outboard alignments. Each application must be thoroughly tested until the ideal combination of performance, steering, and cooling is found.

A common practice is to set-up the outboards parallel, or with a small amount of "toe-out," and adjust inward until best results are achieved.

- A typical set-up, with outboards mounted directly on the transom, often runs best with a slight amount of "toe-in."
- Outboards mounted behind the transom on motor brackets usually require parallel alignment or "toe-out."

Adjust the outboard alignments by adjusting tie bar. Follow the tie bar manufacturer's adjustment procedures.

Check steering operation. Make sure that the steering system operates properly at various trim angles.

Confirm Alignment

To confirm proper alignment, perform the following steps:

- · Water test the boat.
- Monitor the water pressure for both outboards.
- Run the boat at various trim angles.
- Perform steering maneuvers and vary the throttle settings.
- Monitor boat and outboard performance.

A sudden loss of water pressure or excessive propeller ventilation on one or both outboards may indicate a misalignment of the gearcases. Reset the outboard alignment and retest.

NOTES

Technician's Notes	Related Documents	
	Bulletins	
	Instruction Sheets	
	110000000000000000000000000000000000000	
	Other	

MAINTENANCE

TABLE OF CONTENTS

INSPECTION AND MAINTENANCE SCHEDULE	80
ANTI-CORROSION PROTECTION	81
SACRIFICIAL ANODES	
TESTING PROCEDURE - CONTINUITY	81
METALLIC COMPONENT PROTECTION	81
EXTERIOR FINISHES	81
COOLING SYSTEM	82
FLUSHING	82
WATER INTAKE SCREENS	83
ADDITIONAL MAINTENANCE	83
LUBRICATION	83
STEERING SYSTEM	83
TILLER HANDLE	
SWIVEL BRACKET AND TRAILERING BRACKET	
TILT TUBE	
THROTTLE AND SHIFT LINKAGE	
PROPELLER SHAFT	
GEARCASE LUBRICANT	
TRIM AND TILT	
BATTERY AND BATTERY CONNECTIONS	
FUEL AND OIL SYSTEMS	88
FUEL FILTER	
OIL FILTERS AND OIL RESERVOIR	
AIR SILENCER	
HOSES AND CONNECTIONS	89
SPARK PLUGS	90
REMOVAL	90
INDEXING	90
STORAGE	91
FUEL SYSTEM TREATMENT	91
INTERNAL ENGINE TREATMENT	91
ADDITIONAL RECOMMENDATIONS	92
PRE-SEASON SERVICE	92
OUTBOARD MOUNTING BOLTS	92
GEARCASE LUBRICANT	92
BATTERY(S)	
POWER TRIM AND TILT	
OPERATIONAL CHECKS	92
SUBMERGED ENGINES	
ENGINE DROPPED OVERBOARD (NOT RUNNING)	93
ENGINE DROPPED OVERBOARD (RUNNING)	93
ENGINE DROPPED OVERBOARD (IN SALT WATER)	
PROLONGED SUBMERSION (ERESH OR SALT WATER)	93

INSPECTION AND MAINTENANCE SCHEDULE

Routine inspection and maintenance is necessary to prolong outboard life. The following chart provides guidelines for inspection and maintenance to be performed by an authorized Dealer.

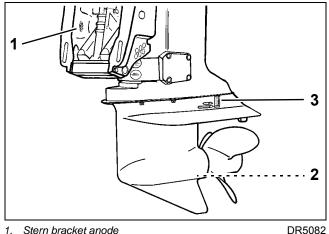
IMPORTANT: Outboards used in rental, commercial, or other high hour applications require more frequent inspections and maintenance. Adjust schedule for operating and environmental conditions.

Description	Engine Care Product	Routine Inspection	Every 300 hours or every three years ⁽¹⁾
Engine Monitor self-test and warning horn, check		✓	
Emergency stop circuit and lanyard, check operation		✓	
Controls, steering and tilting; check operation		✓	
Engine mounting hardware, re-tighten (40 ft. lbs.)		✓	
Fasteners, tighten any loosened components		✓	
Water intake screens, check condition		✓	
Cooling system; check water pump indicator / water pressure		✓	
Anticorrosion anodes, check condition		✓	
Gearcase, check condition		✓	
Propeller, check condition		✓	
Fuel and oil systems, inspect and repair leaks (2)		✓	
Check battery connections and condition		✓	
Access EMM information, resolve any service codes			✓
Electrical and ignition wires, inspect for wear or chafing			✓
Fuel filter, replace			✓
Oil filters, replace			✓
Gearcase lubricant, replace	Α		✓
Spark plugs, inspect or replace (2)			✓
Thermostats, inspect and check operation (2)			✓
Grease fittings, lubricate (3)	С		✓
Power trim/tilt and fluid level, inspect	В		✓
Propeller shaft splines, inspect and lubricate (3)	С		✓
Starter pinion shaft, inspect and lubricate (3)	D		✓
Control cables, inspect and adjust			✓
Steering cable, inspect and lubricate	С		✓
Water pump, inspect / replace (more often if water pressure loss or overheating occurs)			✓

⁽¹⁾ Average recreational use. Commercial use, heavy use, or use in salt or polluted water requires more frequent inspection and maintenance.

- A HPF Pro Gearcase Lubricant
- B Power Trim/Tilt Fluid (Three ram hydraulic systems)
 Biodegradeable TNT Fluid (Single ram hydraulic systems)
- C Triple-Guard Grease
- D Starter Bendix Lube Only

⁽²⁾ Emission-related component


⁽³⁾ Annually in salt water applications

ANTI-CORROSION **PROTECTION**

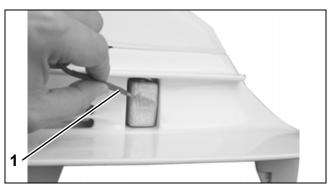
Sacrificial Anodes

Galvanic corrosion occurs in fresh or salt water. Salt, brackish, and polluted water can accelerate corrosion. "Sacrificial" anodes are intended to protect the underwater metal components of the outboard from galvanic corrosion.

Outboards are equipped with three sacrificial anodes.

- 1. Stern bracket anode
- 2. Propeller shaft bearing housing anode (inside of gearcase housing)
- 3. Gearcase housing anode

Visually inspect anodes and metal components below water level. Erosion of anodes is normal and indicates the anodes are functioning properly.


IMPORTANT: Anodes that are not eroding may not be properly grounded. Anodes and the mounting screws must be clean and tight for effective corrosion protection.

For best anode performance:

- · Replace all anodes that have eroded or disintegrated to two-thirds of their original size.
- · Do not paint or apply protective coatings to anodes or anode fasteners.
- · Avoid using metal-based antifouling paint on the boat or outboard.

Testing Procedure – Continuity

Connect ohmmeter leads between engine ground and anode surface.

1. Meter lead to anode

000677

The meter should show little or no resistance. If resistance is high, check the following:

- · Remove the anode and clean the area where the anode is installed
- Clean the mounting screws
- Install the anode and test again.

Metallic Component Protection

Protect metal components on outboards from corrosion. Use the following products to minimize corrosion:

- Anti-Corrosion Spray provides a heavy, waxy coating to protect components
- "6 in 1" Multi-Purpose Lubricant provides a thin film of anti-corrosion protection.

Exterior Finishes

Maintain the outboard's exterior finish to prevent corrosion and reduce oxidation:

- Use automotive wax to protect the outboard's exterior finish from oxidation
- Clean regularly using clean water and mild detergent soap
- Touch-up damage to painted surfaces promptly.

MAINTENANCE

COOLING SYSTEM

COOLING SYSTEM

Check the condition of cooling system components regularly:

- · water intake screens
- water pump
- · all internal water passages
- thermostats
- all external water hoses and fittings
- vapor separator cooling passages and fittings
- EMM cooling passages and fittings
- overboard water pressure indicator.

Flushing

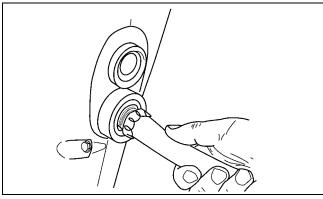
Flush the outboard with fresh water following each use in brackish, salt, or polluted water to minimize the accumulation of scale and silt deposits in cooling system passages.

The outboard can be flushed on the trailer or at dockside; running or not running.

IMPORTANT: The outboard must be located in a well ventilated area with appropriate ground drainage during the flushing procedures.

Keep water inlet pressure between 20 to 40 psi (140 to 275 kPa).

Flushing — Outboard Running


WARNING

To prevent injury from contact with rotating propeller, remove the propeller before flushing.

Refer to **Propeller Hardware Installation** on p. 70.

Place outboard in VERTICAL (DOWN) position in a well ventilated area.

Thread garden hose into flushing port.

002024

Shift the outboard to NEUTRAL with the propeller removed.

Turn water supply on.

START outboard. Run it at IDLE only.

Shut OFF the outboard. Turn off water supply and remove garden hose.

Leave the outboard in VERTICAL (DOWN) position long enough for the powerhead to drain completely.

Reinstall propeller.

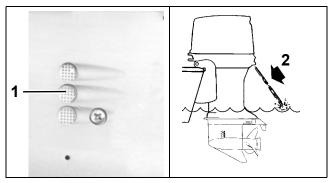
Flushing — Outboard Not Running

Outboard can be in VERTICAL (DOWN) or TILTED (UP) position.

Thread garden hose into flushing port.

Turn water supply ON.

Flush outboard for at least five minutes.


Turn off water supply and remove garden hose.

Position outboard in VERTICAL position (DOWN) long enough to allow the powerhead to drain completely.

Water Intake Screens

Inspect condition of water intake screens. Clean or replace as needed.

Confirm function of overboard water pressure indicator.

Water intake screen
 Overboard indicator

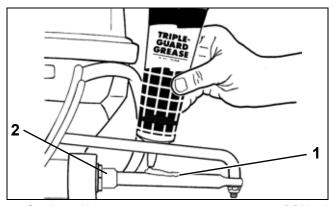
001212 drc4952arev

Additional Maintenance

- · Check Engine Monitor function.
- Check operation or visually inspect thermostats and pressure relief valve. Clean or replace as needed.
- Check that all water passages, hoses, and fittings for both the EMM and the vapor separator flow water freely.
- Replace water pump.

LUBRICATION

Steering System


A

WARNING

Failure to regrease as recommended could result in steering system corrosion. Corrosion can affect steering effort, making operator control difficult.

Grease the stainless steel output end of the steering cable with *Triple-Guard* grease.

Use an appropriate cleaning solvent to remove corrosion and dirt from output end of cable prior to coating it with grease. Make sure wiper nut is installed and not damaged.

Steering cable
 Wiper nut

DR29546

MAINTENANCE

LUBRICATION

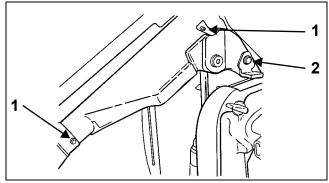
Tiller Handle

Lubricate the tiller handle grease fittings with *Triple-Guard* grease.

1. Tiller handle fittings – Standard handle

008196

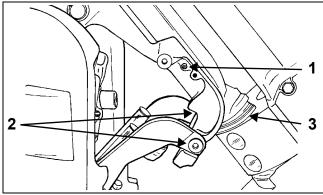
1. Tiller handle fittings – Long handle


008197

Swivel Bracket and Trailering Bracket

Lubricate the swivel bracket with *Triple-Guard* grease.

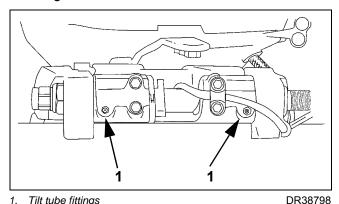
Apply grease until the grease begins to flow from the upper or lower swivel bracket areas.


Coat the pivot points of the trailering bracket with *Triple-Guard* grease.

2-Cylinder models

- 1. Grease fitting
- 2. Tilt support

DR31329


3-Cylinder models

DR5073

- Grease fitting
 Pivot points
- 3. Lower swivel bracket area

Tilt Tube

Lubricate the tilt tube grease fittings with *Triple-Guard* grease.

Throttle and Shift Linkage

Disconnect the battery cables at the battery.


Remove clips and washers from throttle and shift lever pins. Carefully, remove casing guides from pins.

IMPORTANT: DO NOT disturb cable trunnion adjustments.

Shift remote control into FULL THROTTLE/REVERSE position to fully extend the plastic casing guides.

Apply *Triple-Guard* grease to:

- Cable attachment pins of both the throttle and shift levers
- Inner casings of both the throttle and shift cables.

- 1. Attachment pins, throttle and shift cables
- 2. Inner casings, throttle and shift cables

Shift the remote control to the NEUTRAL/IDLE position.

Install control cables.

Check proper throttle and shift function.

Propeller Shaft

Debris from the water can become lodged around propeller shaft. Frequent inspection can minimize potential gearcase damage.

WARNING

When servicing the propeller, always shift the outboard to NEUTRAL, turn the key switch OFF, and disconnect the battery cables at the battery.

Remove propeller. Refer to **Propeller Hardware Installation** on p. 70.

Inspect bushing and blade surfaces. Replace damaged or worn propellers.

Clean propeller shaft. Inspect propeller shaft seals. Replace damaged or worn seals.

Apply *Triple-Guard* grease to entire length of propeller shaft prior to installing propeller.

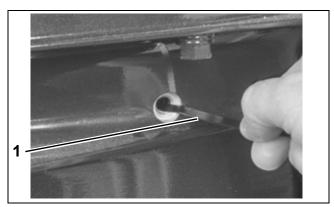
Reinstall propeller hardware and propeller.

Gearcase Lubricant

Draining

002214

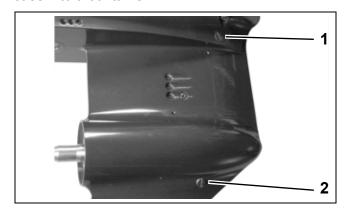
WARNING


Gearcase lubricant may be under pressure and/or hot. If plug is removed from a recently operated outboard, take precautions to avoid injury.

IMPORTANT: Always check the fill level of the gearcase lubricant at the upper plug before

MAINTENANCE

LUBRICATION


removing the lower, drain/fill plug. A tie strap can be used to check lubricant level.

1. Tie strap

000072

Remove the lubricant level plug, then the lubricant drain/fill plug, and drain the lube from the gearcase into a container.

- Lubricant level plug
- 2. Lubricant drain/fill plug

001993

Inspection

Inspect the lube and the magnets on the plugs for metal chips. The presence of metal **fuzz** can indicate normal wear of the gears, bearings, or shafts within the gearcase. Metal **chips** can indicate extensive internal damage.

Inspect the lubricant for water contamination. Water can make the lubricant milky in appearance. However, normal aeration can also cause the same appearance.

To check for water contamination, put lubricant into a glass container. Allow the oil to settle for a minimum of one hour to determine if there is an abnormal amount of water in the oil. Some gearcase lubricants are designed to mix with a small

amount of water from normal water vapor condensation within the gearcase.

Refer to **GEARCASE LEAK TEST** on p. 331.

Overheated lubricant will have a black color and burned odor.

Internal gearcase inspection is recommended when lubricant is contaminated or shows signs of failure.

Filling

Refer to the **INSPECTION AND MAINTENANCE SCHEDULE** on p. 80 for service frequency and recommended lubricants.

Secure the gearcase in a vertical position.

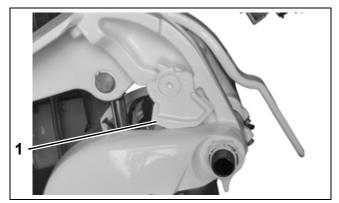
Remove the lubricant level plug and the lubricant drain/fill plug.

Slowly fill the gearcase with gearcase lube through the drain/fill hole until it appears at the oil level hole. Filling the gearcase too quickly can cause air pockets and the gearcase may not fill completely. Clean plug seal area and install the lubricant level plug and **new** seal, then the lubricant drain/fill plug and **new** seal. Tighten them to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

- 1. Lubricant level plug
- 2. Lubricant drain/fill plug

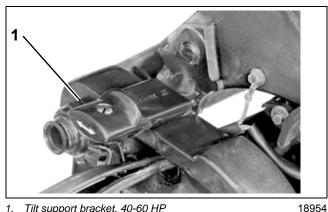
27023

IMPORTANT: The recommended gear lubricants are formulated for marine applications. Do not use automotive gear lubricants, engine oils, or any other oil or grease.


Trim and Tilt

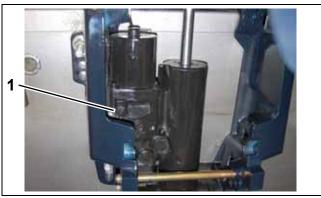
CAUTION

Correct fluid level must be maintained to ensure operation of the impact protection built into the unit.


Check reservoir fluid level at least every three years or 300 operating hours.

- 75-90 HP: System capacity is approximately 21 fl. oz. (620 ml).
- 40-60 HP: System capacity is approximately 15.2 fl. oz. (450 ml).
- Tilt the outboard and engage the tilt support.

1. Tilt support bracket, 75-90 HP


002279

1. Tilt support bracket, 40-60 HP

Remove filler cap and check fluid level.

• Single Ram System-Add Evinrude/Johnson Biodegradable TNT Fluid, as needed, to bring level to the bottom of the fill plug threads.

Single Ram System, 79 - 90 HP Filler cap

008017

Single Ram System, 40 - 60 HP 1. Filler cap

008018

Install the filler cap and tighten to a torque of 45 to 55 in. lbs. (5 to 6 N·m).

- · Disengage tilt support.
- · Cycle the unit at least five complete cycles to purge all air from the system. When cycling the unit, hold the trim switch ON an additional 5 to 10 seconds after the unit reaches the end of its travel before activating the switch in the opposite direction.

BATTERY AND BATTERY CONNECTIONS

Check battery connections frequently. Periodically remove battery to clean and service connections.

Λ

WARNING

Battery electrolyte is acidic—handle with care. If electrolyte contacts any part of the body, immediately flush with water and seek medical attention.

- Confirm that battery meets the minimum engine requirements.
- · Connections must be clean and tight.
- Observe all wiring connections prior to disassembly.

Disconnect battery negative (–) cable **first** and the battery positive (+) cable last.

Clean all terminals, battery posts, and connectors with a solution of baking soda and water. Use a wire brush or battery terminal tool to remove corrosion buildup. Rinse and clean all surfaces.

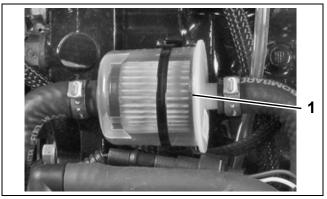
Reinstall battery and tighten all connections securely. Refer to **Battery Installation** on p. 33.

IMPORTANT: DO NOT secure battery cables with wing nuts.

Coat all connections with *Triple-Guard* grease and insulate to prevent shorts or spark arcing.

WARNING

Keep battery connections clean, tight, and insulated to prevent their shorting or arcing and causing an explosion. If the battery mounting system does not cover the connections, install covers.


FUEL AND OIL SYSTEMS

Routine replacement of filters reduces the possibility of foreign material restricting the incoming fuel or oil supplies.

Replacement filter elements are available through *Evinrude/Johnson Genuine Parts*.

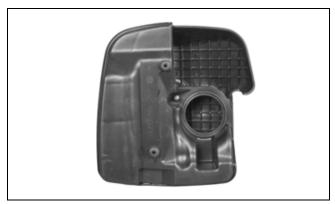
Fuel Filter

Evinrude E-TEC 40–90 HP outboards are equipped with an in-line fuel filter. Refer to **FUEL COMPONENT SERVICING** on p. 183.

1. In-line fuel filter

002145

Oil Filters and Oil Reservoir


Perform visual inspections to identify oiling system leaks. Make certain the oil tank is filled and oil supply is not contaminated.

Air Silencer

The air silencer on *Evinrude* outboards maximizes air flow while minimizing noise.

75 - 90 HP 002158

40 - 65 HP 002227

Routine cleaning of the air silencer is recommended to remove any accumulation of debris.

Hoses and Connections

Check condition of all hoses and connections in both the fuel and oil systems:

- Visually inspect all components.
- Observe all clamps, hoses, and connections while outboard is running.
- Replace all damaged components.
- Repair all leaks.

▲ WARNING

Failure to check for fuel leakage could allow a leak to go undetected, resulting in fire or explosion.

MAINTENANCE

SPARK PLUGS

SPARK PLUGS

Spark plugs should be removed and examined periodically. Replace worn, fouled or damaged spark plugs.

Use only recommended spark plugs with the correct gap setting.

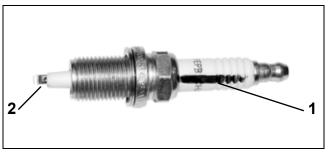
Spark Plug, Champion

QC10WEP @ 0.028 ± 0.003 in. (0.71 mm)

- Remove spark plugs and inspect condition.
- Set spark plug gap on new, replacement spark plugs.
- Mark spark plugs for ground electrode orientation.
- Apply Electrical Grease to the ribbed portion of the spark plug ceramic and to the opening of the spark plug cover to prevent corrosion.
- Install spark plugs using "indexing" procedure.

Removal

Remove ignition coil above spark plug to gain access. When reinstalling coils, tighten screws to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

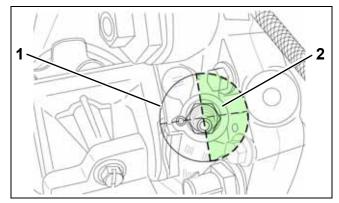


006521

Indexing

Spark plug indexing positions the ground electrode of the spark plug opposite the fuel injector nozzle.

Put an ink mark on the ceramic of the spark plug in line with the OPEN side of the ground electrode. This mark will be used to orient the spark plug with the OPEN side of the ground electrode facing the fuel injector.


1. Ink mark

2. Open side

000758

Apply *Triple-Guard* grease to the gasket surface of the spark plug. Install spark plug and tighten to a torque of 15 ft. lbs. (20 N·m).

If the mark is in unshaded area do not tighten anymore.

Spark Plug Indexing Diagram

- Unshaded area
- 2. Shaded area

002106

If the mark is in the shaded area, reset torque wrench to 30 ft. lbs. (41 $N \cdot m$) and continue to turn until the mark is in the unshaded area.

If the mark does not reach the unshaded area before the torque of 30 ft. lbs. (41 N·m) is reached, the spark plug cannot be indexed for that cylinder. Try another spark plug and repeat the steps above.

STORAGE

IMPORTANT: DO NOT start outboard without a water supply to the outboard's cooling system. Cooling system and/or powerhead damage could occur.

Fuel System Treatment

Stabilize the boat's fuel supply with *Evinrude/ Johnson 2+4 Fuel Conditioner* following the instructions on the container.

Internal Engine Treatment

Remove the propeller, attach garden hose to flushing port and turn on water.

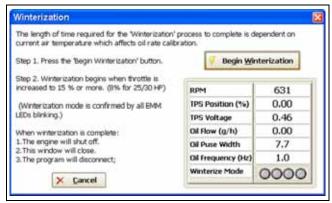
Evinrude E-TEC models are designed to be self-winterizing using either of the following methods:

IMPORTANT: Engine MUST be in NEUTRAL throughout these procedures.

Throttle Control Method

- Advance throttle control to 1/2 throttle (50%) position and then start the outboard. All four SystemCheck lights will turn on and the outboard will run at idle speed.
- After approximately 15 seconds, the System-Check lights will go off. Move throttle to IDLE position. SystemCheck lights will light again.
- Wait another 15 seconds. SystemCheck lights will go off. At this point, advance throttle to FULL (in neutral). SystemCheck lights will flash, indicating that outboard is in winterize mode.
- Outboard will automatically go to fast idle and fog itself. Allow outboard to run until it shuts itself off (about one minute).

IMPORTANT: If *SystemCheck* lights do not flash, or outboard runs above fast idle, immediately turn off outboard and start the procedure again.


Software Control Method

Winterization can also be run using *Evinrude Diagnostics* software. With the outboard running, start the process at the *Settings/Adjustments* screen and follow the instructions.

1. Winterization start button

008077

008119

After the outboard shuts itself off, turn key switch OFF, then detach garden hose.

IMPORTANT: When finished, leave the outboard in vertical position long enough to completely drain the powerhead.

MAINTENANCE

PRE-SEASON SERVICE

Additional Recommendations

- Top off oil reservoir.
- inspect the fuel filter. If there is debris in the fuel filter, it must be replaced.
- · Replace gearcase lubricant.
- · Remove and inspect propeller.
- · Clean and grease propeller shaft.
- Blow water from gearcase speedometer pickup system (gearcase speedometer models only).
- Lubricate all grease fittings and linkages.
- Inspect outboard, steering system, and controls. Replace all damaged and worn components. Refer to manufacturer's and lubrication recommendations.
- Touch up painted surfaces as needed. Coat outer painted surfaces with automotive wax.
- Remove battery(s) from boat. Store in a cool, dry location. Periodically charge battery(s) while stored. Refer to manufacturer's maintenance recommendations when servicing batteries.
- Store outboard in upright (vertical) position.
- Check for fuel leakage.

WARNING

Failure to check for fuel leakage could allow a leak to go undetected, resulting in fire or explosion.

PRE-SEASON SERVICE

If the outboard was removed from the boat for storage, make sure it is reinstalled with factory specified hardware. Refer to the **INSTALLATION AND PREDELIVERY** section for proper set-up.

Outboard Mounting Bolts

 Check and re-tighten outboard mounting bolts to a torque of 40 ft. lbs. (54 N·m).

Gearcase Lubricant

- · Check the lubricant level.
- Inspect gearcase for leaks. If leak is apparent, pressure and vacuum test gearcase.
- · Repair gearcase as needed.

Battery(s)

• Replace batteries that cannot be charged.

Power Trim and Tilt

- Remove filler cap and check fluid level.
- Inspect the power trim and tilt unit for leaks.
 Repair as needed.

Operational Checks

- Steering system
- · Remote controls
- SystemCheck gauge
- All other accessories and instrumentation

Check Oil Injection Tank

• Inspect the oil tank for leaks.

Check Fuel System

- Inspect entire fuel system for leaks before starting outboard.
- · Repair all leaks.

Water Pump

 Make sure a steady stream of water flows from overboard indicator.

WARNING

Failure to check for fuel leakage could allow a leak to go undetected, resulting in fire or explosion.

SUBMERGED ENGINES

Once an outboard has been submerged in fresh or salt water, it must be serviced within three (3) hours of recovery. Immediate service can minimize the corrosive affect that air has on the polished surfaces of the crankshaft, connecting rods, and internal powerhead bearings.

IMPORTANT: If outboard cannot be started or serviced immediately, it should be resubmerged in fresh water to avoid exposure to the atmosphere.

Engine Dropped Overboard (Not Running)

Disconnect the battery cables at the battery.

Rinse powerhead with clean water.

Remove spark plug leads and spark plugs.

Place outboard in horizontal position (cylinder heads down). Slowly rotate flywheel in a clockwise rotation to work all water out of powerhead.

IMPORTANT: If sand or silt may have entered the outboard, DO NOT attempt to start it. Disassemble and clean.

Disassemble all electrical connectors. Clean connectors and terminals, and treat with water displacing electrical spray. Apply *Electrical Grease* to terminals prior to reassembly. Coat all exposed solenoid terminals and engine grounds with *Black Neoprene Dip.*

Clean and inspect all electrical components. Replace damaged or corroded components prior to returning the outboard to service. Electric starters should be disassembled, cleaned, flushed with clean water, and treated with water displacing electrical spray prior to reassembly.

Disconnect fuel supply hose from outboard. Drain and clean all fuel hoses, filters, and fuel tanks.

Disconnect oil supply hose and oil return hose from outboard. Drain and clean all oil hoses, filters, and oil tank assemblies.

Refill fuel tank with fresh fuel and oil tank with recommended oil.

Prime oil system and fuel system. Refer to **FUEL AND OIL PRIMING** on p. 62. Make sure all oil injection hoses are clean and filled with oil.

Make sure high pressure fuel system does not contain water. Flush as needed.

Inject a small amount of outboard lubricant into spark plug holes and install new spark plugs. Refer to Spark Plug **Indexing** on p. 90.

Reinstall all removed or disconnected parts.

Use Evinrude Diagnostics software to:

- Initiate Break-in
- Check fuel pump operation
- Check injector operation (fuel and oil)
- Check timing (once outboard is running at full operating temperature)

Run outboard below 1500 RPM for one-half hour.

Engine Dropped Overboard (Running)

Follow the same procedures as **Engine Dropped Overboard (Not Running)**. However, if there is any binding when the flywheel is rotated, it may indicate a bent connecting rod and no attempt should be made to start the outboard. Powerhead must be disassembled and serviced immediately.

Engine Dropped Overboard (In Salt Water)

Follow the same procedures used for Engine Dropped Overboard (Not Running) and Engine Dropped Overboard (Running). Disassemble and clean outboards that have been submerged in salt water for prolonged periods of time. Clean or replace electrical components as necessary.

Prolonged Submersion (Fresh or Salt Water)

Outboards that have been dropped overboard and not recovered immediately, must be serviced within three hours of recovery. Follow the same procedures used for Engine Dropped Overboard (Not Running) and Engine Dropped Overboard (Running).

NOTES

Technician's Notes Related Documents Bulletins Instruction Sheets Other

ENGINE COVER SERVICE

TABLE OF CONTENTS

JPPER COVER SERVICE	96
LATCH HOOK INSTALLATION	96
LOWER COVER SERVICE	96
LOWER COVER REMOVAL	96
LOWER COVER INSTALLATION	97
LATCH HANDLE INSTALLATION	98
TRIM SWITCH INSTALLATION	98

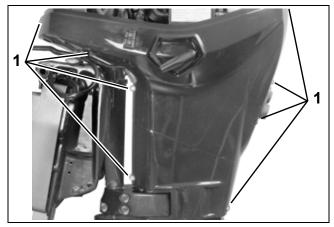
UPPER COVER SERVICE

Latch Hook Installation

Insert threaded bracket into pocket.

1. Bracket 006468

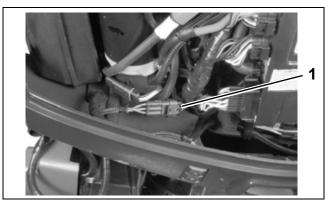
Apply Ultra-Lock to screw threads. Place hook into position with opening toward the front. Tighten screws to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).



006469

LOWER COVER SERVICE

Lower Cover Removal


Remove lower engine cover screws.

1. Lower cover screws

002168

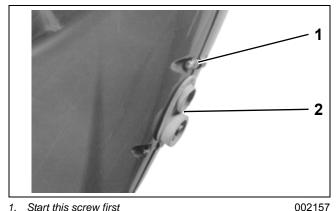
Loosen port side cover slightly, and disconnect trim/tilt switch connector. Then, remove port and starboard covers.

1. Trim/tilt switch connector

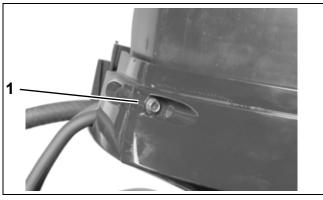
002169

Lower Cover Installation

Installation of lower motor covers will be easier if the following steps are performed in order:

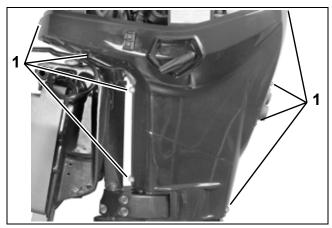

- · Install air silencer on throttle body.
- Place starboard cover on outboard and route fuel hose and battery cable through grommet notch.
- Insert trim cable grommet into port side cover.
- · Connect trim/tilt switch connector.
- Place port side cover into position on outboard.

- Trim cable grommet
- Trim/tilt switch connector


002216

Start the screw above the exhaust relief grommet first. Tighten just enough to hold the grommet in place.

- Start this screw first
- 2. Exhaust relief grommet


Start the top front screw next and draw cover halves together.

Start this screw second

002165

Install remaining cover screws and tighten all screws to 24 to 36 in. lbs. (3 to 4 N·m).

1. Lower cover screws

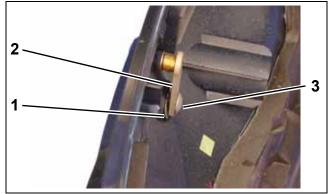

002168

ENGINE COVER SERVICE

LOWER COVER SERVICE

Latch Handle Installation

Apply a light coat of *Triple-Guard* grease to latch handle shaft. Insert handle into lower cover.



1. Triple-Guard grease

006470

006471

Apply *Ultra-Lock* to screw threads. Place spring washer and hook into position and tighten screw to a torque of 180 in. lbs. (20 N·m).

- 1. Spring washer
- 2. Hook
- 3. Screw

Trim Switch Installation

Place switch into position through cover.

006746

Install nut on switch. Tighten nut to a torque of 10 to 16 in. lbs. (1 to 2 $N \cdot m$).

006747

Install electrical connector. Refer to **CONNECTOR SERVICING** on p. 160.

006748

ENGINE MANAGEMENT MODULE (EMM)

TABLE OF CONTENTS

DESCRIPTION	
EMM FUNCTIONS	
EMM CONNECTIONS	
LED INDICATORS	
EMM INPUTS AND OUTPUTS DIAGRAM	101
INTERNAL SENSORS	102
EMM TEMPERATURE SENSOR	
55 V CIRCUIT SENSOR	
12 V CIRCUIT SENSOR	
5 V CIRCUIT SENSOR	
BAROMETRIC PRESSURE SENSOR	
EXTERNAL SENSORS	103
AIR TEMPERATURE SENSOR	
ENGINE TEMPERATURE SENSOR	
LOW OIL SWITCH	
THROTTLE POSITION SENSOR	
CRANKSHAFT POSITION SENSOR	105
NEUTRAL SWITCH	105
INTERNAL EMM FUNCTIONS	106
ENGINE MONITOR SYSTEM	107
S.A.F.E. WARNING SYSTEM	
SHUTDOWN MODE	
DIAGNOSTIC SOFTWARE FUNCTIONS	
COMMUNICATION	
STATIC INFORMATION	
DYNAMIC INFORMATION	
STORED SERVICE CODES (FAULTS)	
HARD FAULTS	
PERSISTENT FAULTS	
STATIC TESTS	
DYNAMIC TESTS	
OIL CONTROL SETTINGS	
TILLER/REMOTE PROGRAMMING	
IGNITION TIMING	
TPS CALIBRATION	
IDLE SPEED CONTROL	
FUEL INJECTOR SERVICING	114
REPORTS	115
SOFTWARE REPLACEMENT	
EMM TRANSFER	115
EMM SERVICING	116
REMOVAL	116
INSTALLATION	116

ENGINE MANAGEMENT MODULE (EMM)

DESCRIPTION

DESCRIPTION

The Engine Management Module (*EMM*) is a water-cooled engine controller. It controls many outboard systems including alternator output for the 12 V and 55 V circuits. Operating voltage is supplied to the *EMM* by the stator.

This section discusses the functions of the *EMM* and its various internal and external sensors. It also describes using *Evinrude Diagnostics* software to retrieve and adjust service information stored in the *EMM*

EMM Functions

The *EMM* controls the following processes and functions:

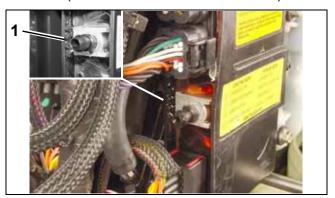
- Alternator output; 55 V and 12 V
- Fuel and ignition timing and duration
- Fuel injector activation
- Oil injector pump activation
- · Electric fuel pump control
- Idle speed control
- RPM limiter
- Electrical circuit monitoring
- Service code creation and storage
- Warning system activation
- ROM verification, self-test
- Choke-less cold starting
- · Output of diagnostic data
- Tachometer signal
- RPM profile and engine hours
- Oiling ratios
- Exhaust water valve activation (60 65 HP)

EMM Connections

IMPORTANT: *EMM* connections and wiring must be clean and tight. Improper electrical connections can damage the *EMM*. DO NOT run the outboard with loose or disconnected wiring.

Make sure EMM connections are clean and tight.

- Engine wire harness to EMM connectors; J1-A, J1-B, J2
- Stator to EMM connections; one 6-pin AMP and J2 connector.


- J1-A connector
- J1-B connector
- 3. J2 connector

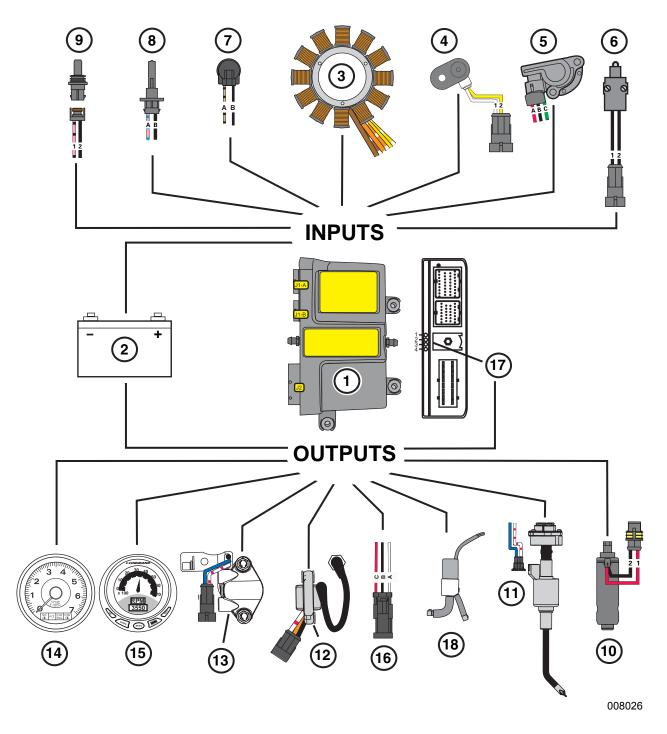
006487

LED Indicators

The *EMM* has four LED indicators located next to the electrical connectors that provide useful information about the status of the system.

IMPORTANT: LED 1 is toward the top of the outboard (Closest to *EMM* J1-B connector).

LED indicators
 (Cooling hose removed for clarity)


002429 006467

When the ignition key is turned ON, LEDs 3 and 4 should light, indicating that sensor circuits and the stop circuit are working.

As the outboard is being started, all four LEDs should light and then go off in sequence. If any of the LEDs does NOT light during starting, refer to **EMM LED INDICATORS** on p. 121.

When the outboard is running, all LEDs should be off. If any LED is lighted while the outboard is running, refer to **EMM LED INDICATORS** on p. 121.

EMM INPUTS AND OUTPUTS DIAGRAM

- 1. Engine Management Module (EMM)
- 2. Battery (12 volt)
- 3. Stator
- 4. Crankshaft Position Sensor (CPS)
- 5. Throttle Position Sensor (TPS)
- 6. Neutral Switch

- 7. Low Oil Switch
- 8. Air Temperature Sensor (AT)
- 9. Engine Temperature Sensor
- 10. Fuel Pump (high pressure)
- 11. Oil Injection Pump and Manifold
- 12. Ignition Coil

- 13. Fuel Injector
- 14. Tachometer/SystemCheck Gauge
- 15. I-Command (CANbus) Display
- 16. Diagnostic Connector
- 17. LED Indicators
- 18. Exhaust Water Valve

ENGINE MANAGEMENT MODULE (EMM)

INTERNAL SENSORS

INTERNAL SENSORS

Sensor inputs and internal *EMM* controllers are used to control outboard operation. Use *Evinrude Diagnostics* software to troubleshoot the sensors. Refer to the *EMM* Service Code Chart at the back of this manual for a complete list of all engine fault codes.

Internal sensors are NOT serviceable. Reprogramming or replacement may be required to resolve internal *EMM* issues.

EMM Temperature Sensor

Monitors the temperature of the fuel injector driver circuits.

If the *EMM* temperature exceeds 176°F (80°C) or the circuit fails, the *EMM*:

Activates	S.A.F.	E.
<u> </u>		

Stores service code 25

EMM LED 4: ON (Running)

Engine Monitor TEMP display: ON

If *EMM* temperature exceeds 212°F (100°C) or the circuit fails, the *EMM*:

Activates	SHUT	DOWN
Activates	01101	

Stores service code 29

EMM LED 4: FLASHING

Engine Monitor TEMP display: FLASHING

IMPORTANT: The outboard will not restart until the engine cools below 212°F (100°C)and the *EMM* temperature returns to normal. Refer to **SHUTDOWN MODE** on p. 108.

If *EMM* temperature is less than -22°F (-30°C) or the circuit fails, the *EMM*:

~ ·			
Storge	service	ahn	'21

EMM LED 3: OFF (Cranking)

EMM LED 3: ON (Running)

If sensor reads less than -71°F (-57.4°C) or greater than 313°F (156°C), a sensor circuit fault is detected and the *EMM*:

Stores service code 23

EMM LED 3: OFF (Cranking)

EMM LED 3: ON (Running)

55 V Circuit Sensor

Monitors the EMM's 55 V alternator circuit.

If system voltage exceeds 57 volts, the EMM:

Activates S.A.F.E.

Stores service code 18

EMM LED 1: ON (Running)

Engine Monitor CHECK ENGINE display: ON

If system voltage is less than 45 V, the *EMM*:

Activates S.A.F.E.

Stores service code 17

EMM LED 1: ON (Running)

Engine Monitor CHECK ENGINE display: ON

12 V Circuit Sensor

Monitors the EMM's 12 V alternator circuit.

If battery voltage exceeds 15.5 volts, the *EMM*:

Stores service code 27

EMM LED 1: ON (Running)

Engine Monitor LOW BATTERY display: ON

If battery voltage is less than 12.5 V, the *EMM*:

Stores service code 26

EMM LED 1: ON (Running)

Engine Monitor LOW BATTERY display: ON

5 V Circuit Sensor

Monitors the EMM's 5 V sensor circuit.

If sensor voltage is less than 4.75 volts, the *EMM*:

Stores service code 78
EMM LED 3: OFF (Cranking)
EMM LED 3: ON (Running)

Barometric Pressure Sensor

Supplies the *EMM* with barometric pressure reading to compensate for changes in altitude and air density.

If the BP sensor reads less than 13.3 KPa or greater than 119.0 KPa, or the sensor or circuit fails, the *EMM*:

Stores service code 44

If the BP sensor reads less than 70 KPa, the *EMM:*

Stores a service code 45

If the BP sensor reads greater than 105 KPa, the *EMM*:

Stores service code 46

EXTERNAL SENSORS

Sensor inputs and internal *EMM* controllers are used to control outboard operation. Use *Evinrude Diagnostics* software to troubleshoot the sensors. Refer to the *EMM* Service Code Chart at the back of this manual for a complete list of all engine fault codes.

The *EMM* provides a 5 V DC signal for sensor circuits. It monitors all sensor voltage inputs and compares them to predetermined acceptable ranges. Inputs that fall outside of the acceptable range create service codes.

Air Temperature Sensor

The air temperature sensor monitors the air temperature at the throttle body.

If the AT sensor voltage is out of the expected range, or the sensor or circuit fails, the *EMM*:

Stores service code 47, 48, or 49
EMM LED 3: OFF (Cranking)
EMM LED 3: ON (Running)

Engine Temperature Sensor

Monitors cylinder head temperature.

75 - 90 HP MODELS

If cylinder head temperature exceeds 212° F (100° C) below 3500 RPM, the *EMM*:

Activates S.A.F.E.
Stores service code 40
EMM LED 4: ON (Running)
Engine Monitor TEMP display: ON

If cylinder head temperature exceeds 194° F (90° C) above 3500 RPM, the *EMM*:

Activates S.A.F.E.
Stores service code 43
EMM LED 4: ON (Running)
Engine Monitor TEMP display: ON

ENGINE MANAGEMENT MODULE (EMM)

EXTERNAL SENSORS

If cylinder head temperature exceeds 212° F (100° C) above 3500 RPM, or 230° F (110° C) below 3500 RPM, the *EMM:*

Activates SHUTDOWN
Stores service code 31
EMM LED 4: FLASHING
Engine Monitor TEMP display: FLASHING

40 - 65 HP MODELS

If cylinder head temperature exceeds 212° F (100° C), the *EMM*:

Activates S.A.F.E.
Stores service code 43
EMM LED 4: ON (Running)
Engine Monitor TEMP display: ON

If cylinder head temperature exceeds 248°F (120°C), the *EMM:*

Activates SHUTDOWN
Stores service code 31
EMM LED 4: FLASHING
Engine Monitor TEMP display: FLASHING

ALL MODELS

The outboard will not restart after a temperature related SHUTDOWN until the engine temperature returns to normal. Refer to **SHUTDOWN MODE** on p. 108.

If sensor values are less than -15°F (-26.1°C) or greater than 332°F (166.5°C), the *EMM:*

Stores service code 41
EMM LED 3: OFF (Cranking)
EMM LED 3: ON (Running)

If sensor values are below -4°F (-20°C), the *EMM*:

Stores service code 42	
EMM LED 3: OFF (Cranking)	
EMM LED 3: ON (Running)	

If cylinder head does not reach operating temperature (104°F / 40°C below 2300 RPM) in 10 minutes, the *EMM*:

Stores service code 58
EMM LED 3: OFF (Cranking)
EMM LED 3: ON (Running)

Low Oil Switch

The low oil switch monitors the oil level in the oil tank.

If the oil level falls below one-quarter capacity, the *EMM* signals:

Engine Monitor LOW OIL display: ON

When the oil level falls below one-quarter, the *EMM* begins counting oil pump pulse cycles. When it reaches:

40 – 65 HP: 4800 pulses
75 – 90 HP: 6000 pulses

the EMM:

Activates S.A.F.E.
Stores service code 117
EMM LED 4: ON (Running)
Engine Monitor NO OIL display: ON

To recover from S.A.F.E. mode, the oil pump must cycle for a minimum of three pulses with the oil level above one-quarter.

If outboard has been run for more than 3 hours with NO OIL faults (codes 34 & 117), the *EMM*

Activates SHUTDOWN
Stores service code 33
EMM LED 4: FLASHING
Engine Monitor NO OIL display: FLASHING

EXTERNAL SENSORS

Throttle Position Sensor

The throttle position sensor receives a voltage signal from the *EMM*. As the throttle lever is rotated, the *EMM* receives a return voltage signal through a second wire. This signal increases as the TPS lever is advanced. A third wire provides a ground circuit back to the *EMM*.

If the TPS circuit is greater than 0.78 volts when the key is turned to ON, or the recoil starter is pulled, the *EMM*:

Creates service code 11

If the outboard starts, the code is stored.

If code 11 is present as both a Hard Fault and a Stored Fault, refer to **Control Cable Installation** on p. 57. For tiller models, refer to **Throttle Cable Adjustment** on p. 314, or **Throttle Cable Adjustment** on p. 325.

If the TPS or TPS circuit fails (below 0.14 volts or above 4.92 volts), the *EMM*:

Stores service code 12
Limits engine RPM to IDLE
EMM LED 3: OFF (Cranking)
EMM LED 3: ON (Running)
Engine Monitor CHECK ENGINE display: ON

IMPORTANT: When a TPS circuit fault has been detected, the outboard will not accelerate above idle speed. To reset, stop the outboard and correct the fault.

If the TPS circuit reads below 0.2 volts, the *EMM*:

Stores service code 13
EMM LED 3: OFF (Cranking)
EMM LED 3: ON (Running)
Engine Monitor CHECK ENGINE display: ON

If the TPS circuit reads above 4.85 volts, the *EMM*:

Stores service code 14
EMM LED 3: OFF (Cranking)
EMM LED 3: ON (Running)
Engine Monitor CHECK ENGINE display: ON

Crankshaft Position Sensor

Ribs spaced on the flywheel mark crankshaft position. As the ribs pass the magnetic field of the CPS, an AC voltage signal is generated. The *EMM* uses this signal to identify crankshaft position and speed, generate a tachometer signal, and control fuel and ignition timing.

If the sensor is damaged or the signal is intermittent (10 occurrences), the *EMM*:

Stores service code 16
EMM LED 2: OFF (Cranking)
EMM LED 3: ON (Running)

Approximate air gap between CPS and flywheel encoder ribs is .073 (1.85 mm).

Use the *Evinrude Diagnostics* software *Monitor* screen to check CPS operation. The software should show an RPM reading while the outboard is cranking. If the CPS or its circuit fails, no RPM reading will appear and the outboard cannot run.

Neutral Switch

The powerhead mounted neutral switch controls a ground signal from the *EMM* to indicate shift linkage position. This allows the *EMM* to control idle speed variations and start in gear protection. Fuel and ignition functions are turned off if the neutral switch is not closed.

If the starter is cranked while the outboard is in gear, or if the switch fails, the *EMM*:

Stores service code 19
EMM LED 3: OFF (Cranking)
Engine Monitor CHECK ENGINE display: ON

The *Monitor* screen of the diagnostics software displays switch position, NEUTRAL or IN GEAR. Make sure switch is operating properly.

ENGINE MANAGEMENT MODULE (EMM)

INTERNAL EMM FUNCTIONS

INTERNAL EMM FUNCTIONS

ROM Verification

The *EMM* performs a self-test of programming every time it is turned ON. Service code 15 indicates a programming (software) issue. Reprogram the *EMM* with the correct software program to correct the problem.

Idle Controller

The idle controller reacts to engine operating conditions. Fuel and ignition timings are altered to maintain a specific RPM when engine is cold or warm. The controller is inactive when TPS is advanced from idle position.

RPM Limiter

This feature of *EMM* programming prevents engine damage due to excessive RPM. At 6250 RPM, fuel and ignition to the cylinders is shut off. Normal operation resumes when engine RPM returns to the specified range.

Neutral RPM Limiter

This feature prevents engine damage due to excessive RPM if accelerated in NEUTRAL. Neutral engine speed is limited to 1800 RPM.

Exhaust Water Valve Activation (60 - 65 HP)

During acceleration, the *EMM* opens a valve that injects water into the exhaust housing. This water changes the tuning of the exhaust, allowing the engine to develop more midrange horsepower as the boat comes on plane.

Two conditions must be met to activate the valve:

- Throttle opening above 80%
- RPM between 2500 to 4600.

The valve may not activate if the engine is accelerated slowly.

Engine Monitor and Warning Systems

Refer to **ENGINE MONITOR SYSTEM** on p. 107.

Refer to S.A.F.E. WARNING SYSTEM on p. 108.

Refer to **SHUTDOWN MODE** on p. 108.

Fault Code Creation and Storage

Refer to the **EMM** Service Code Chart at the back of this manual for a complete list of all engine fault codes.

ENGINE MONITOR SYSTEM

ENGINE MONITOR SYSTEM

All remote controlled outboards must be equipped with an engine monitoring system to warn the operator of conditions that could damage the outboard.

The engine monitor system includes sensors on the outboard and oil tank, a warning horn, a dashmounted display, and related wiring.

The outboard's *EMM* sends information about monitored functions to:

- SystemCheck gauges
- An I-Command or ICON display
- EMM LED indicators.

IMPORTANT: Operating the outboard without an engine monitor will void the warranty for failures related to monitored functions.

Typical I-Command and SystemCheck gauges

007988

The *EMM* activates the warning horn and gauge displays as follows:

- LOW OIL means that oil in the tank is at reserve level (about 1/4 full).
- NO OIL indicates the oil tank is empty.
- WATER TEMP or HOT indicates an engine or EMM overheat condition.
- CHECK ENGINE or FAULT is used to indicate other fault conditions identified by the EMM.

Refer to the **EMM** Service Code Chart at the back of this manual for a complete list of all fault codes

System Self-Test

During engine start-up, pause with the key switch in the ON position. The horn self-tests by sounding a half-second beep. *SystemCheck* gauges self-test by turning the indicator lights on simultaneously, then off in sequence.

Service Mode

SystemCheck goes into a service mode if the key is left ON after self-test (engine NOT running). All light circuits and sensors are active, but the horn is not. Grounding the appropriate light circuit wire will turn the light on, but the horn will not sound. Refer to **SystemCheck CIRCUIT TESTS** on p. 151.

Engine Running

All warning circuits are active when the engine is running. The horn circuit is active when engine speed exceeds 500 RPM.

Engine monitor warnings activate the horn for 10 seconds and the appropriate gauge light for a minimum of 30 seconds. If the failure is momentary (for example, oil moving in the tank), the light will remain ON for the full 30 seconds before going out. If the fault continues, the light remains ON until the key is turned OFF or the failure is corrected. The warning will reoccur at the next start-up if the problem is not corrected.

S.A.F.E. WARNING SYSTEM

S.A.F.E. WARNING SYSTEM

The S.A.F.E. (Speed Adjusting Failsafe Electronics) warning system alerts the operator and protects against engine damage from the following abnormal conditions:

Code 17	Alternator 55 V below expected range
Code 18	Alternator 55 V above expected range
Code 25	EMM temperature above expected
	range
Code 34	Oil injector open circuit
Code 40	Cylinder head temperature above
	expected range-low speed
Code 43	Cylinder head temperature above
	expected range–high speed
Code 117	NO OIL detected

Activation

When one of these conditions occurs, the *EMM* interrupts fuel injector and ignition operation, reducing engine speed to 1200 RPM. The warning horn sounds and an Engine Monitor message displays. When *S.A.F.E.* is active, the engine will run normally below 1200 RPM. Above 1200 RPM, the engine will shake excessively.

Recovery

The engine will operate in *S.A.F.E.* as long as the fault condition exists. To recover normal operation, two conditions must be met:

- Sensor or switch readings must be back within limits
- The EMM must be reset—stop and restart

SHUTDOWN MODE

Outboard "shutdown" will occur if specific faults are detected by the *EMM*:

Code 29	Excessive <i>EMM</i> temperature
Code 31	Excessive engine temperature
Code 33	Excessive NO OIL condition
Code 57	High RPM with low TPS setting

Code 57 occurs when the *EMM* detects abnormally high RPM relative to the TPS position. This condition could be caused by uncontrolled fuel entering the combustion cycle. Before removing the code and STARTING the outboard, find and repair the cause.

- Perform Fuel System Pressure Test on p. 178. Check for external fuel leakage that could allow fuel and/or vapor to enter the engine through the air intake.
- Check for internal fuel leakage from a leaking injector or vapor separator vent hose.

WARNING

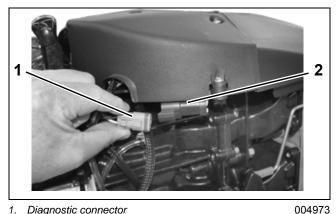
If the engine shuts OFF and the "CHECK ENGINE" light or *EMM* SENSOR FAULT LED is flashing, the engine cannot be restarted. A hazardous fuel condition may exist which could result in a fire or explosion.

Recovery

To recover from shutdown mode, the *EMM* must NOT detect the related fault at start-up. The outboard will not restart until the cause of the stored service code is resolved (code 29 and 31) and the code is cleared using diagnostics software (code 33 and 57). Then, the *EMM* must be turned OFF and ON again.

IMPORTANT: Shutdown related to code 57 or 33 requires the removal of the stored service code. Use *Evinrude Diagnostics* software to clear a code 57 or 33.

DIAGNOSTIC SOFTWARE FUNCTIONS


The EMM stores valuable information about the outboard and its running history. This information can be used for troubleshooting, for checking parts information, and for making adjustments to the system.

Use Evinrude Diagnostics software, version 4.0 or higher, and a laptop computer to access program information.

IMPORTANT: For software help, refer to the "Help" menu in the software.

Communication

Locate the diagnostic connector on the engine. Remove the cover and install the Diagnostic Interface Cable (P/N 437955).

- Diagnostic connector

Connect the 9-pin connector of the interface cable directly to the computer's serial port.

The EMM must turn ON before it will communicate with the computer.

ELECTRIC START MODELS

Power is normally supplied to the *EMM* when the key switch is ON. Switched B+ (12 V) enters the EMM at pin 28 (purple) of the EMM J1-B connector.

The EMM is also turned ON when it begins to receive AC voltage from the stator while the outboard is being cranked.

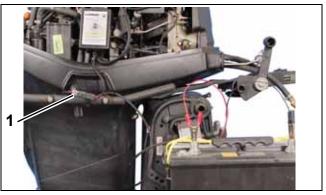
ROPE START MODELS

Diagnostic communications on non-running rope start models requires that power is supplied to the EMM.

Use Diagnostic Power Supply Tool, P/N 587005, to supply power to the EMM. The power supply uses internal 9-volt batteries.

Disconnect the tiller handle harness connector from the engine harness. Connect Power Supply Tool to the engine harness connector. Turn toggle switch to the ON position to power the *EMM*.

Power supply tool


Engine harness connectors

007279

IMPORTANT: Static tests require more power than the internal batteries of the tool can provide. Static tests performed using only the internal power supply batteries will produce false results.

Connect an external 12 volt battery to the Power Supply Tool when performing these static tests:

- Fuel pump
- Fuel injector
- Ignition coil
- Oil injector

1. External power connector

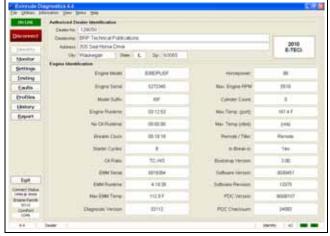
007280

ENGINE MANAGEMENT MODULE (EMM)

DIAGNOSTIC SOFTWARE FUNCTIONS

If Diagnostic Power Supply Tool, P/N 587005, is not available, a Battery Cable, P/N 584348, can be connected to the engine mounted solenoid. Use accessory Key Switch Assembly, P/N 176408, to control power to the *EMM*.

- 1. Accessory key switch
- 2. Battery cable


007281 007282

Dattery Cable 007

Static Information

Static information is viewed when the outboard is NOT running. This includes manufacturing information.

The outboard model and serial numbers displayed on the *Identity* screen must match the identification label on the outboard swivel bracket.

Identity Screen

008078

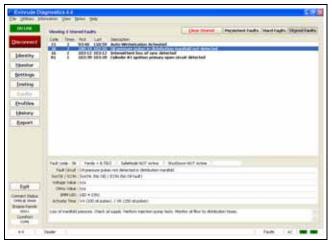
The serial number and cylinder location displayed on the *Injector Coefficients* screen must match the actual cylinder placement for each injector.

Injector Coefficients Screen

008079

Dynamic Information

Dynamic information is viewed while the outboard is running. Changes in data, such as voltages or temperatures, are shown as they happen.

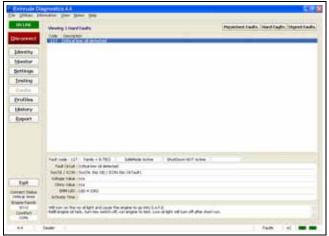

Monitor Screen

080800

Stored Service Codes (Faults)

Service codes are stored if an abnormal condition occurs while the outboard is running.

The Stored Faults screen of the diagnostics software shows the code number, the number of times the event occurred, and operating hours of first and last occurrences.



Stored Faults Review Screen

008098

Hard Faults

A hard fault is a service code that currently exists. Hard faults become stored faults only if the outboard is running.

Hard Faults Review Screen

008081

Persistent Faults

The *Persistent Faults* screen keeps a history of all previously stored codes, including code number, the number of times the event occurred, and operating hours of the last occurrence.

Persistent faults cannot be erased.

Static Tests

Static Tests allow diagnostic testing of system components while the outboard is NOT running.

Static Tests Screen

008082

Ignition Test

Use the diagnostics software to test each ignition circuit. Refer to **Static Ignition Test** on p. 125.

Fuel Test

Use the diagnostics software to test each fuel injector circuit. Refer to **Fuel Injector Static Test** on p. 128.

Oil Injector

Use the diagnostics software to test the oil injection pump circuit. Refer to **OILING SYSTEM TESTS** on p. 204.

Fuel Pump

Use the diagnostics software to test the fuel pump circuit. Refer to **Fuel Pump Static Test** on p. 128.

Water Injector

This test activates the exhaust water valve solenoid (60 - 65 HP). Refer to **Exhaust Water Valve Static Test** on p. 130.

ENGINE MANAGEMENT MODULE (EMM)

DIAGNOSTIC SOFTWARE FUNCTIONS

Overheat

This test is used to check the "ENG TEMP" or "HOT" circuit of the Engine Monitoring system.

Oil Fault

This test is used to check the "NO OIL" circuit of the Engine Monitoring system.

Check Engine


This test is used to check the "CHECK ENGINE" circuit of the Engine Monitoring system.

Tachometer

This test is used to check operation of the tachometer circuit.

Dynamic Tests

Dynamic tests are performed with the outboard running.

Dynamic Tests Screen

008083

Ignition Test

This test momentarily disables the ignition and fuel injection circuits to one cylinder. By dropping one cylinder, RPM and running quality changes can be observed. Refer to **DYNAMIC TESTS** on p. 120.

Fuel Test

This test momentarily disables one fuel injector circuit. By dropping one cylinder, RPM and running quality changes can be observed. Refer to **DYNAMIC TESTS** on p. 120.

Prime Oil

This test is used to cycle the oil injection pump for priming the oiling system. Perform this test with outboard running to activate oil injection pump.

Oil Control Settings

Set Oil Type

The TC-W3 oil type setting is the standard setting for all outboards. Set TC-W3 for:

- Operation with all TC-W3 outboard oils including XD30, XD50, or XD100
- Applications requiring maximum lubrication
- Extreme applications (racing or harsh conditions).

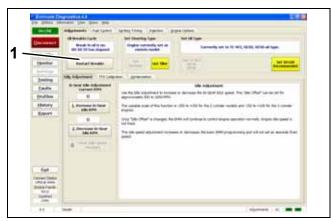
The *XD100* setting provides an option to run the outboard at a reduced oil injection rate. This setting REQUIRES the use of *Evinrude XD100* outboard lubricant and is not recommended for all applications.

Use the *XD100* setting for:

- Conventional use (runabouts, cruisers)
- Moderate applications.

1. Oil control setting

008084

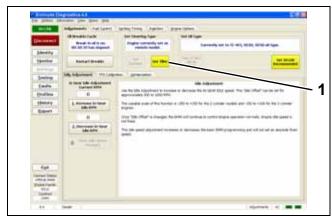


CAUTION

Running an *Evinrude E-TEC* outboard on other grades of oil while set to the *XD100* oil ratio will result in increased engine wear and shortened outboard life.

Powerhead Break-In

Use the diagnostics software to start break-in oiling after a powerhead rebuild. The break-in oiling program runs for two hours of outboard operation, above 2000 RPM.

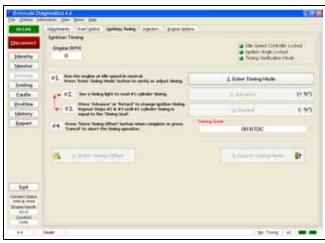


1. Break-in oil setting

008084

Tiller/Remote Programming

This feature controls the start in gear protection function of the neutral switch. Tiller operated models, including remote models with an installed tiller conversion kit, MUST be set to TILLER.


1. Starter mode setting

008084

Ignition Timing

Use the *Ignition Timing* screen to check and adjust *EMM* timing. *EMM* timing must be synchronized to crankshaft position.

Refer to **TIMING ADJUSTMENTS** on p. 157.

008085

Check timing after any of the following procedures:

- Powerhead replacement
- · Crankshaft replacement
- · Flywheel removal or replacement
- CPS replacement
- *EMM* replacement
- EMM software replacement

IMPORTANT: Make sure the timing pointer is set and the outboard reaches operating temperature before making adjustments.

ENGINE MANAGEMENT MODULE (EMM)

DIAGNOSTIC SOFTWARE FUNCTIONS

TPS Calibration

TPS Calibration synchronizes throttle plate opening with throttle position sensor voltage.

Refer to TPS Calibration on p. 158.

1. TPS Calibration button

008086

Perform TPS Calibration after replacing or adjusting any throttle body or throttle linkage parts.

Idle Speed Control

Use the *Idle Adjust* function to increase or decrease IN GEAR IDLE speed. This adjustment offsets the basic *EMM* programming and will not set an absolute fixed speed. After the offset is changed, the *EMM* continues to control engine operation normally. Engine idle speed is not fixed.

1. Idle adjustment

008084

Fuel Injector Servicing

All *E-TEC* fuel injectors use software programming to compensate for variations in fuel flow. Each injector and its location on the outboard is identified by the *EMM*. DO NOT install an injector without updating the compensation software.

To install a service injector, click the "Replace" button on the *Injector Coefficients* screen and select the file for the replacement injector. Refer to **Fuel Injector Service** on p. 187.

008100

Reports

Engine reports provide service records and can be used to document the running history of an outboard. Reviewing this information can help identify or resolve some service issues.

Click the print button in a window of the diagnostics software to print engine data, or to export the information to a computer file.

- Print button
- 2. Print/Export options

Engine Report data files

008096

Software Replacement

Engine Management Software programs are loaded into the *EMM* at the factory. Periodically, a new program may be available to enhance the operation of an outboard. Select Engine Software Update from the Utilities menu and refer to the instructions provided with the program.

008095

IMPORTANT: Software replacement requires a Bootstrap Tool, P/N 586551.

002383

EMM Transfer

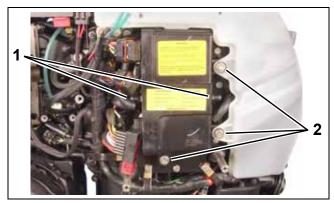
EMM Transfer is used to save engine history data when the EMM must be replaced. Select EMM Data Transfer from the Utilities menu. Select the Collect EMM data to FILE option and follow the instructions provided with the program.

IMPORTANT: Whenever the *EMM* is replaced. EMM timing must be synchronized to crankshaft position. Refer to TIMING ADJUSTMENTS on p. 157.

ENGINE MANAGEMENT MODULE (EMM)

EMM SERVICING

EMM SERVICING


IMPORTANT: If a new *EMM* is being installed, refer to **EMM Transfer** on p. 115.

Removal

Disconnect cooling hoses from EMM.

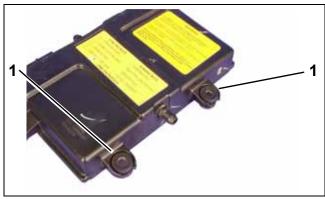
Disconnect J1-A, J1-B, and J2 connectors.

Remove three *EMM* retaining screws and washers. Remove *EMM*.

- 1. Cooling hose connections
- 2. EMM mounting screws

006476

Remove EMM from behind oil tank bosses.



006477

Installation

Installation is the reverse of removal. Pay close attention when performing the following tasks.

Make sure isolator mounts are placed in slots in of *EMM* case. Slide *EMM* into position.

1. Isolator mounts 006478

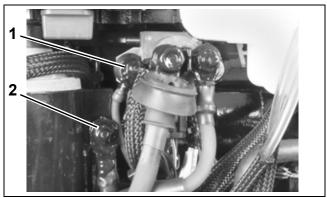
Apply *Nut Lock* to threads of *EMM* retaining screws. Tighten to a torque of 30 to 42 in. lbs. (4 to $5 \text{ N} \cdot \text{m}$).

Install harness connectors and cooling hoses. Secure hoses with tie straps.

SYSTEM ANALYSIS

TABLE OF CONTENTS

DIAGNOSTIC PROCEDURES	118
VISUAL INSPECTIONS	118
OPERATIONAL INSPECTIONS	118
TROUBLESHOOTING	119
DYNAMIC TESTS	120
CYLINDER DROP TESTS	120
FUEL CONTROL ADJUSTMENT	120
INDUCTIVE AMP METER TEST	120
EMM LED INDICATORS	121
KEY ON	121
STARTING	121
RUNNING	122
IGNITION OUTPUT TESTS	123
REQUIRED IGNITION SYSTEMS	123
WIRING INSPECTION	123
CRANKSHAFT POSITION SENSOR (CPS) TEST	124
SYSTEM VOLTAGE TEST	124
STATIC IGNITION TEST	125
RUNNING IGNITION TESTS	
IGNITION CONTROL CIRCUIT TESTS	
IGNITION COIL TESTS	
CAPACITOR TEST	
FUEL DELIVERY TESTS	128
FUEL PUMP STATIC TEST	128
FUEL INJECTOR STATIC TEST	
RUNNING FUEL SYSTEM TESTS	129
EXHAUST WATER VALVE	130
EXHAUST WATER VALVE STATIC TEST	130
EXHAUST WATER VALVE DYNAMIC TEST	130


DIAGNOSTIC PROCEDURES

Visual Inspections

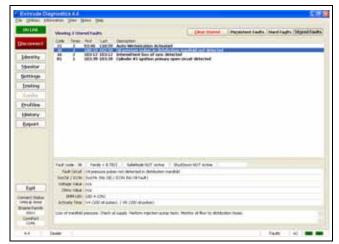
Inspect wiring and electrical connections. Disassemble and clean all corroded connections. Replace damaged wiring, connectors, or terminals. Repair any shorted electrical circuits.

- Refer to ELECTRICAL HARNESS CONNEC-TIONS on p. 136.
- Refer to WIRING DIAGRAM at the back of this manual.
- Refer to CONNECTOR SERVICING on p. 160.

Make sure all ground connections are clean and tight. Refer to **GROUND CIRCUITS** on p. 138.

- 1. Main engine harness ground
- 2. Ground stud (battery)

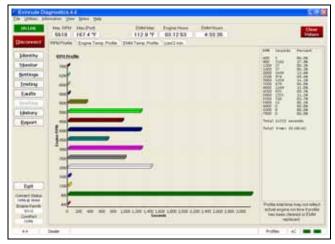
002292


Inspect spark plugs for wear, oil fowling, or damage. A rich or lean running condition or evidence of internal engine damage could be identified by the appearance of the spark plugs.

Check the fuse and the emergency stop switch lanyard.

Operational Inspections

Run the outboard to confirm actual symptoms before performing any unnecessary procedures. Inspection should include the following:


- Make sure the outboard can be cranked easily, with no mechanical binding.
- Check the EMM LED Indicators for system status information. Refer to EMM LED INDICATORS on p. 121.
- Check the Evinrude Diagnostics software Hard Faults and Stored Faults screens for current service codes. Correct any problems and clear the codes before further troubleshooting. Refer to Stored Service Codes (Faults) on p. 111.

Stored Faults Review Screen

008098

Check the diagnostics software *Profiles*, *History*, and *Persistent Faults* screens for evidence of abnormal operation.

Profiles Screen

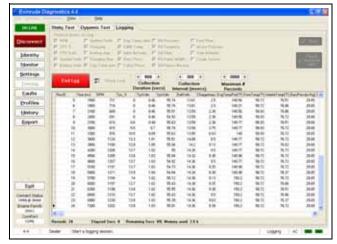
008088

Troubleshooting

Outboard will not crank, starter does not operate:

- Check condition of battery and cables (main battery switch and cables). Make sure battery cables are not reversed.
- Confirm that switched B+ is present at "A" terminal (yellow/red wire) of starter solenoid with key switch in the START position.
- Check ground at "B" terminal harness connection.
- Refer to ELECTRIC START TESTS on p. 146.
 Repair starter or start circuit as needed.

Outboard cranks, will not start:


- Check emergency stop switch and lanyard
- Check powerhead mounted neutral switch
- Check the EMM LED Indicators for system status information. Refer to EMM LED INDICATORS on p. 121.
- Use the Evinrude Diagnostics software Stored Faults screen to check for current service codes. If there are multiple stored sensor codes, inspect all 5 V sensor circuits for broken or grounded wiring.
- Perform a Static Ignition test using Evinrude Diagnostics software and an inductive timing light. Refer to Static Ignition Test on p. 125.
- If ignition test indicates steady spark, refer to **FUEL DELIVERY TESTS** on p. 128.

Outboard runs, low on power, misfires:

- Check the EMM LED Indicators for system status information. Refer to EMM LED INDICATORS on p. 121.
- Use the Evinrude Diagnostics software Monitor screen to check system (55 V) and TPS voltages. System voltage should be steady, and TPS voltage should be between 0.2 and 4.85 V.

IMPORTANT: Use a digital multimeter to check voltage on external circuits only when necessary. All *EMM* output currents are DC current.

- Use the diagnostics software *Dynamic Tests* to isolate a faulty cylinder. See **DYNAMIC TESTS** on p. 120.
- Use an inductive timing light to check ignition and fuel injector circuits. Refer to Running Ignition Tests on p. 126 and Running Fuel System Tests on p. 129.
- Use the diagnostics software Fuel Control Adjustment test to help identify a cylinder that may be too rich or too lean. Refer to Fuel Control Adjustment on p. 120.
- Use an inductive amp meter to monitor injector circuit current. Compare readings of all circuits to identify possible failure.
- Check fuel quality and that fuel is present at injectors.
- Use the diagnostics software *Logging* function to record engine data as a problem is occurring.

Logging Screen

008097

 AFTER all the above inspections, if the cause of a running quality problem still cannot be identified, perform a compression test to check for internal powerhead damage.

IMPORTANT: Remove a cylinder head or disassemble the engine only as a last resort.

DYNAMIC TESTS

Cylinder Drop Tests

Use the *Evinrude Diagnostics* software *Dynamic Tests* to momentarily disable one cylinder while the outboard is running.

- The Dynamic Ignition test disables the ignition and fuel injection circuits to a cylinder.
- The Dynamic Fuel test momentarily disables one fuel injector circuit.

By dropping one cylinder, RPM and running quality changes can be compared for each cylinder.

IMPORTANT: Test the outboard at the RPM where the problem is occurring. Use the test procedures to identify inconsistencies in voltages and cylinder performance. Once a circuit has been identified as malfunctioning, inspect all related wiring and connections. Check all voltage inputs and grounds; and perform resistance tests for all circuits before replacing any suspect components.

Dynamic Tests can be used with:

- A timing light to determine how other cylinders are affected by one cylinder being "dropped"; or
- A digital multimeter to check voltage changes on electrical circuits.

Dynamic Test Screen

008083


IMPORTANT: DO NOT misinterpret tests run at IDLE. The idle speed controller in the *EMM* compensates to maintain a constant IDLE speed. The *Dynamic Tests* screen includes a function to temporarily disable the idle controller.

Fuel Control Adjustment

Use this test is to help identify a cylinder that may be too rich or too lean. This feature should not be used by itself to identify a faulty injector.

Evinrude Diagnostics software allows temporary adjustments to the fuel flow characteristics of the injectors. Factory fuel flow settings are restored when power to the *EMM* is returned to OFF.

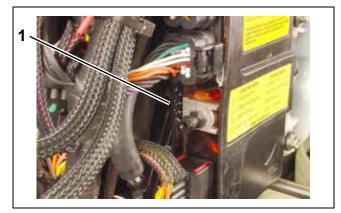
Test the outboard at the RPM where the problem is occurring.

008089

If the outboard run quality improves with a fuel control adjustment, eliminate other possibilities before replacing an injector:

- Refer to Fuel System Pressure Test on p. 178.
- Refer to Running Fuel System Tests on p. 129.

IMPORTANT: DO NOT misinterpret tests run at IDLE. The idle speed controller in the *EMM* compensates to maintain a constant IDLE speed.


Inductive Amp Meter Test

Use an inductive amp meter to monitor battery charging and current flow. Identifying erratic amperage in a circuit can be used to isolate a problem component.

EMM LED INDICATORS

The *EMM* LED indicators provide a quick reference to the status of several outboard systems. Checking the LEDs FIRST when diagnosing an engine problem can save time.

IMPORTANT: LED 1 is toward the top of the outboard (closest to EMM J1-B connector).

1. LED indicators

006467

Key ON

IMPORTANT: Diagnostic communications on non-running rope start models requires that power is supplied to the *EMM*. Refer to **Communication** on p. 109.

When the *EMM* is ON (engine not running), the following LEDs should light:

LED 3 – Sensor Circuits working. FLASHING LIGHT indicates Code 57 – engine will not start.

LED 4 – Stop Circuit not grounded–okay to start. FLASHING LIGHT indicates severe overheat or no oil – engine in SHUTDOWN mode.

Starting

Starting mode occurs from the time the flywheel begins to turn until the outboard is running for 2 seconds. During starting, all four LEDs should light and then go off in sequence.

LED 1 – CHARGING OKAY – Stator signal 30 V or higher.

LED 2 – CRANK POSITION OKAY – input from CPS, *EMM* powered ON. For NO LIGHT, check for:

Code 16 – CPS, intermittent loss of sync

LED 3 – SENSORS OKAY (5 V). For NO LIGHT, check for:

- Code 12 TPS circuit fault
- Code 13 TPS below expected range
- Code 14 TPS above expected range
- Code 19 In Gear (tiller models)
- Code 23 *EMM* temp. sensor circuit fault
- Code 24 *EMM* temp. below expected range
- Code 41 temp. sensor circuit fault
- Code 42 temp. below expected range
- Code 47 AT sensor circuit fault
- Code 48 AT sensor below expected range
- Code 49 AT sensor above expected range
- Code 58 Operating temperature not reached
- Code 78 Sensor supply voltage fault

For FLASHING LIGHT, check for Code 57.

LED 4 – LANYARD/STOP OKAY. For NO LIGHT, check for:

Grounded stop circuit.

For FLASHING LIGHT, check for:

- Code 29 *EMM* temp. OVER range (flashing)
- Code 31 Engine temp. OVER range (flashing)
- Code 33 Engine shutdown, excessive no oil condition

SYSTEM ANALYSIS

EMM LED INDICATORS

Running

When the outboard is running, all of the LEDs should be off. If a light is on, check for:

LED 1 – CHARGING FAULT:

- Code 17 system voltage (55 V) below range
- Code 18 system voltage (55 V) above range
- Code 26 low battery (12 V) voltage
- Code 27 high battery (12 V) voltage

LED 2 - INJECTOR/IGNITION FAULT:

- Code 51 cylinder no. 1 injector circuit open
- Code 52 cylinder no. 2 injector circuit open
- Code 53 cylinder no. 3 injector circuit open
- Code 61 cylinder no. 1 injector circuit short
- Code 62 cylinder no. 2 injector circuit short
- Code 63 cylinder no. 3 injector circuit short
- Code 81 no. 1 ignition coil circuit open
- Code 82 no. 2 ignition coil circuit open
- Code 83 no. 3 ignition coil circuit open
- Code 90 Water injection solenoid short
- Code 91 fuel pump circuit open
- Code 93 Water injection solenoid open
- Code 94 fuel pump circuit short
- Code 101 No. 1 ignition timing circuit shorted
- Code 102 No. 2 ignition timing circuit shorted
- Code 103 No. 3 ignition timing circuit shorted

LED 3 – Sensor circuits (5 V), SENSOR FAULT. For LIGHT ON, check for possible fault codes:

- Code 12 TPS circuit fault
- Code 13 TPS below expected range
- Code 14 TPS above expected range
- Code 16 CPS, intermittent loss of sync
- Code 23 EMM temp. sensor circuit fault
- Code 24 EMM temp. below expected range
- Code 41 temp. sensor circuit fault
- Code 42 temp. below expected range
- Code 47 AT sensor circuit fault
- Code 48 AT sensor below expected range
- Code 49 AT sensor above expected range
- Code 57 high RPM with low TPS setting
- Code 58 operating temp. not reached
- Code 78 Sensor supply voltage fault

LED 4 – Engine overheat, *EMM* temperature or sensor, oil injection pump or sensor, NO OIL / OVERHEAT. For LIGHT ON, check for possible fault codes:

- Code 25 EMM overheat
- Code 29 EMM overheat, critical (flashing)
- Code 31 engine overheat, critical (flashing)
- Code 33 excessive NO OIL faults
- Code 34 oil injection pump circuit open
- Code 40 engine overheat, low rpm
- Code 43 engine overheat
- Code 117 Critical NO OIL detected

IGNITION OUTPUT TESTS

▲ DANGER

The electrical system presents a serious shock hazard. Allow outboard to sit for two minutes after running before handling capacitor or 55 V electrical components. Failure to handle capacitor properly can result in uncontrolled electrical discharge and possible electrical shock to humans. DO NOT handle primary or secondary ignition components while outboard is running or flywheel is turning.

Use the *Evinrude Diagnostics* software *Stored Faults* screen to check for current service codes before troubleshooting. Correct any problems and clear the codes FIRST.

Required Ignition Systems

Following is a complete list of circuits required for ignition output:

Stop Circuit

 Black/yellow wire NOT grounded (emergency stop switch lanyard in place).

Neutral Switch

 Powerhead mounted neutral switch provides a switched ground circuit to EMM. The circuit enables specialized control functions such as neutral start protection and RPM limiting in NEUTRAL.

Stator Output Voltage

 Provides A/C voltage to EMM J2 connector: Outboard cranking, typical range is 20-40 VAC (AC output voltage is related to cranking RPM); Outboard running, approximately 55 VAC.

EMM

 Controls ignition grounds, injector grounds, and engine timing.

Crankshaft Position Sensor

- Provides *EMM* with input.
- Outboard cranking speed exceeds 300 RPM and a steady CPS signal is generated.

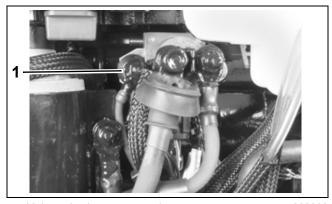
Alternator Output/System Voltage

 System voltage from EMM (white/red) provides 55 VDC to the high pressure fuel pump, the oil injection pump, the fuel injectors, and the ignition coils.

Capacitor

- Connected to 55 V circuit (white/red) to stabilize current on 55 V circuit
- Negative terminal of capacitor must be grounded.

Ignition Coil


- Primary circuits are powered by system (55 V) voltage
- EMM provides control signal to ignition coil
- Output from ignition coil secondary winding and high tension spark plug wire.

Wiring Inspection

Visually inspect all wiring, connections, and grounds.

Use a digital ohmmeter to test resistance on all ground circuits and connections. Ohmmeter readings should be approximately 0.0 Ω .

Check that all engine wire harness grounds have continuity to the cylinder/crankcase.

1. Main engine harness ground

002292

Clean or repair all ground circuits, wiring, and connections as needed.

Crankshaft Position Sensor (CPS) Test

When the CPS is working properly, *EMM* LED 2 turns on while the outboard is being started.

Use the *Evinrude Diagnostics* software CPS Sync and engine RPM displays to confirm a valid CPS signal while the outboard is cranking or running. An RPM display higher than zero indicates a CPS signal to the *EMM*.

Engine RPM and CPS Sync displays

008080

If the *Monitor* screen says "Check CPS Sync," refer to **Crankshaft Position Sensor (CPS) Test** on p. 139.

System Voltage Test

The ignition system is powered by the 55 V system.

Use the *Evinrude Diagnostics* software *Monitor* screen to check system voltage.

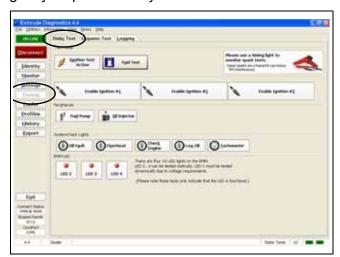
Monitor Screen, System voltage

080800

Results:

- *EMM* ON (not running) approximately 1 V less than battery voltage, system voltage is GOOD.
- EMM ON (not running) no voltage, check 12 V power to EMM. Repair connection or wiring.
- RUNNING 55 V ± 2, system voltage is GOOD.
- RUNNING less than 55 V ± 2, check stator output to EMM. Repair connection or wiring. Possible faulty stator or EMM. Refer to STA-TOR TESTS on p. 141.

IMPORTANT: The *EMM* must be ON for voltage to be present on the system voltage (55 V) circuit. Power is normally supplied to the *EMM* when the key switch is turned ON. The *EMM* is also turned ON when it begins to receive AC voltage from the stator while the outboard is being cranked. On a non-running rope start engine, power is supplied to the *EMM* by Diagnostic Power Supply Tool, P/N 587005.

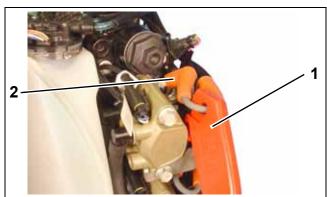

Static Ignition Test

Perform the static ignition test using *Evinrude Diagnostics* software and an inductive timing light.

IMPORTANT: Do NOT perform static tests using Diagnostic Power Supply Tool, P/N 587005, with internal 9 volt batteries only. This will produce false results. Refer to **Communication** on p. 109.

IMPORTANT: DO NOT use a spark checker tool. Radio Frequency Interference (RFI) generated by the arcing current can cause erratic *EMM* operation.

The outboard must NOT be running and the emergency stop switch lanyard must be installed.



Static Tests Screen

008082

Connect timing light pickup to the secondary circuit (spark plug lead) of the cylinder being tested. Activate test and observe timing light strobe for consistent flash

IMPORTANT: This test is operating the ignition coil with 12 V battery power on the system voltage (55 V) circuit. An inductive probe with low sensitivity may not be able to detect the signal.

1. Timing light pick-up

Spark plug lead

006492

Results:

No spark on one or more cylinders:

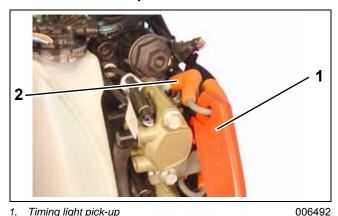
- Inspect or replace spark plugs
- Refer to Ignition Control Circuit Tests on p. 127
- Refer to Ignition Coil Tests on p. 127

Steady spark on all cylinders:

 Refer to Running Ignition Tests on p. 126 and DYNAMIC TESTS on p. 120.

SYSTEM ANALYSIS

IGNITION OUTPUT TESTS


Running Ignition Tests

Use Evinrude Diagnostics Software to monitor system voltage (55 V).

- Voltage readings at a specific speed (RPM) should be steady
- Refer to System Voltage Test on p. 124.

Use an inductive timing light to monitor the spark signal through each of the secondary circuit (spark plug lead) wires.

Start outboard and observe timing light strobe. Look for a consistent flash and only one flash per revolution. The strobe of the timing light should be the same for each cylinder.

- Timing light pick-up
- 2. Spark plug lead

Results:

Steady voltage and strobe, engine misfires:

- Inspect or replace spark plugs
- Refer to **FUEL DELIVERY TESTS** on p. 128
- Inspect for internal engine damage.

Steady voltage, erratic strobe, engine misfires:

- Inspect or replace spark plugs
- Check CPS air gap and resistance.
- Refer to Ignition Control Circuit Tests on
- Refer to Ignition Coil Tests on p. 127.

Voltages fluctuate, engine misfires:

- Inspect battery and connections
- Test capacitor and all ground connections.
- Refer to **System Voltage Test** on p. 124
- Refer to Ignition Control Circuit Tests on
- Refer to Ignition Coil Tests on p. 127.

IMPORTANT: If a running problem occurs at about 1200 RPM, the outboard may be in S.A.F.E. Refer to **S.A.F.E. WARNING SYSTEM** on p. 108.

Ignition Control Circuit Tests

Use a digital multimeter to test the following:

- System voltage supply to ignition coil.
- Ignition control signal from EMM.
- Engine harness resistance.

Disconnect ignition coil connector.

Supply voltage test:

Use an appropriate adapter to connect the red meter lead to pin 3 (white/red) of the engine harness connector and the black lead to ground. With *EMM* ON, voltage should be approximately 1 V less than battery voltage.

Control signal test:

Set meter to the Hz scale to check ignition control signal.

Use an appropriate adapter to connect the red meter lead to pin 2 (orange) of the engine harness connector and the black lead to ground. Activate diagnostics software *Static Ignition* test and observe meter for consistent reading (approximately 2 Hz).

If control signal is present, connect black meter lead to pin 1 (black) and repeat test to confirm harness ground.

006609

Harness resistance test:

If control signal is NOT present, calibrate multimeter to low ohms scale. Use appropriate adapters on meter leads to avoid damaging harness connectors.

With *EMM* OFF, remove the *EMM* J1-B connector and test the continuity of each ignition control circuit (orange). Check resistance between J1-B connector and ignition coil connector. Refer to engine wiring diagram.

If circuits test good, replace EMM.

Ignition Coil Tests

There are no simple ignition coil tests available. Before replacing an ignition coil, be sure:

- 55 V is supplied to the white/red wire of the ignition coil connector
- A control signal is present on the orange wire of the ignition coil connector. Refer to Ignition Control Circuit Tests on p. 127.
- The black wire of the ignition coil connector provides continuity to ground.
- The secondary spark plug lead provides continuity.

If all of the above tests are good, and a cylinder does not have spark, replace the ignition coil with a known good coil.

Capacitor Test

IMPORTANT: Make sure the capacitor is discharged before testing. Make a momentary connection between the two terminals to ground any stored energy.

Remove capacitor from electrical harness.

Use an ohmmeter set on the high ohms scale to test the capacitor. Connect the meter leads to the capacitor terminals:

- If the capacitor is working correctly, it will store energy from the meter. The resistance reading will increase until it goes to (nearly) infinity.
- If the capacitor is shorted, the reading will immediately show full continuity.
- If there is an open circuit in the capacitor, the meter will show no continuity.

If the resistance reading starts as a negative number, or the reading goes down in value, the capacitor already retains some stored energy. Ground the capacitor and test again.

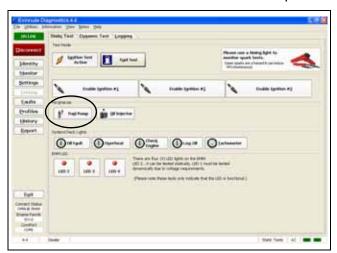
FUEL DELIVERY TESTS

A

WARNING

Protect against hazardous fuel spray. Before starting any fuel system service, carefully relieve fuel system pressure.

Refer to **Relieving Fuel System Pressure** on p. 183.


Check the *Evinrude Diagnostics* software *Stored Faults* screen for current service codes before troubleshooting. Correct any problems and clear the codes FIRST.

Inspect all fuel hoses, filters, and connections. Check quality of fuel supply.

Fuel Pump Static Test

Use the *Evinrude Diagnostics* software Fuel Pump test to activate the electric fuel pump. If the pump runs, the *EMM* and fuel pump circuit are not at fault.

IMPORTANT: Do NOT perform static tests using Diagnostic Power Supply Tool, P/N 587005, with internal 9 volt batteries only. This will produce false results. Refer to **Communication** on p. 109.

Static Tests Screen

008082

If the pump does not run:

 Check voltage at pin 1 of fuel pump connector.
 Voltage should be slightly less than 12 V with KEY ON, or when fuel pump test is activated.

- Voltage should be 55 V when the outboard is cranking or running.
- The EMM controls the fuel pump ground (brown wire). Use an ohmmeter to check continuity between pin 2 of fuel pump connector and ground. Use the fuel pump static test to activate the control function of the EMM. Resistance should drop as EMM connects the control circuit to ground.
- Refer to Circulation Pump Resistance Test on p. 180.

If the pump runs:

- Refer to Fuel System Pressure Test on p. 178.
- Refer to Running Fuel System Tests on p. 129.

Fuel Injector Static Test

Use the *Evinrude Diagnostics* software Fuel Injector Static Test to activate each fuel injector. Listen for an audible click from each injector when it is actuated. If the injector activates, the *EMM* and injector circuits are not at fault.

IMPORTANT: Do NOT perform static tests using Diagnostic Power Supply Tool, P/N 587005, with internal 9 volt batteries only. This will produce false results. Refer to **Communication** on p. 109.

Static Tests Screen

008090

IMPORTANT: This test is operating the injectors with 12 V battery power on the system voltage (55 V) circuit. Battery must be fully charged and connections must be clean and tight. Injector activation should be carefully confirmed.

Results:

No injectors actuate:

- Use the Monitor screen of the diagnostics software to make sure voltage is present on the system voltage circuit.
- Refer to Running Fuel System Tests on p. 129.

Some injectors actuate; some do not:

- For non-working injectors, test the resistance of injector circuit between the injector connector and injector control wire at the EMM.
- See Fuel Injector Resistance Test on p. 180.

All injectors actuate:

 Refer to Running Fuel System Tests on p. 129.

Running Fuel System Tests

Run or crank the outboard.

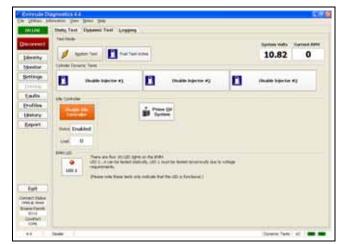
Use the *Evinrude Diagnostics* software *Monitor* screen to check system voltage. If voltage is low, or drops as RPM increases, refer to **Stator Voltage Output Test** on p. 141.

Use an inductive timing light to monitor the injector control wire (connector pin 2) for each injector. Make sure the pickup is attached to only one wire. Flashes on the timing light indicate current in the circuit is being switched by the *EMM*. The *Dynamic Tests* screen allows the control signal to be turned off to a particular injector.

IMPORTANT: Some timing lights may not flash consistently at cranking speeds. Always check the orientation of the timing light pickup and the operation of the timing light.

Results:

No light activation on any injector wires (outboard cranks and starter turns flywheel):


- Check stator input to *EMM*, CPS operation, and all grounds and wiring connections.
- Eliminate all other possibilities to isolate a faulty *EMM*.

Irregular or no light activation on some injector wires:

- Test the resistance of individual injector circuits between the injector connector and injector control wire at the EMM.
- Check battery cable connections.
- Make sure all grounds are clean and tight.
- See Fuel Injector Resistance Test on p. 180.

Steady light activation on all injector wires and consistent voltage readings, *EMM* injector control function is good:

 Use the diagnostics software Dynamic Fuel Test to isolate a faulty cylinder. See DYNAMIC TESTS on p. 120.

Dynamic Tests Screen

008083

- Refer to Fuel Injector Pressure Test on p. 179.
- Refer to Fuel System Pressure Test on p. 178.

EXHAUST WATER VALVE

During rapid acceleration, the *EMM* opens a valve that injects water into the exhaust. This water changes exhaust tuning, boosting midrange horsepower as the boat comes on plane.

If the valve is plugged or not working, the operator may not notice a problem during slow acceleration. During rapid acceleration, the outboard will be low on power around 3200 rpm, depending on boat and load.

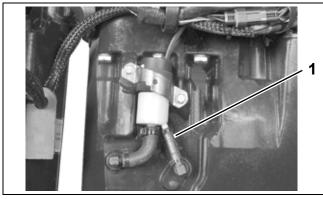
If the valve is stuck open, the outboard may be low on top speed power (above 4600 RPM).

Exhaust Water Valve Static Test

Use *Evinrude Diagnostics* software to test the water valve solenoid electrical circuit. The water valve is a 55 volt coil. The static test, which operates on 12 VDC, will not activate the water valve.

Monitor the voltage at pin 2 (blue/red wire) of the the water valve connector. Voltage should drop while the static test is active.

Static Tests Screen


1. Water valve test button

008099

Exhaust Water Valve Dynamic Test

Use the diagnostics program to perform a dynamic test of the water valve while the outboard is running.

Disconnect the water valve outlet hose.

1. Water valve outlet hose

004293

Start the outboard. No water should flow from the hose. If water appears, check for debris in valve assembly.

With the outboard idling, activate the dynamic water valve test and check for water flow. A steady stream of water should flow from the hose while the test is running.

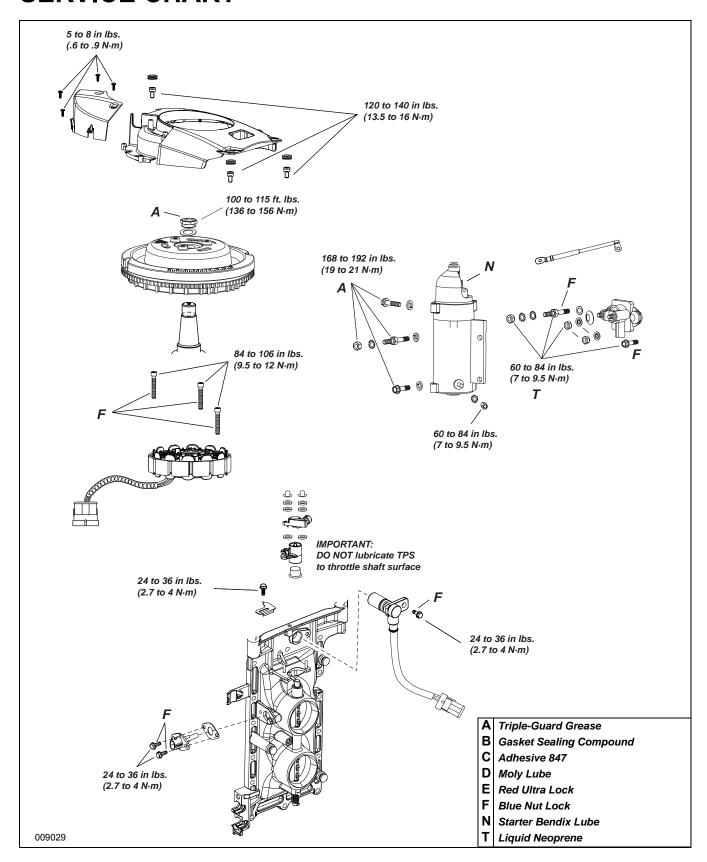
Water should flow at a rate of 18 to 25 ounces / minute (550 to 750cc / minute).

Dynamic Tests Screen

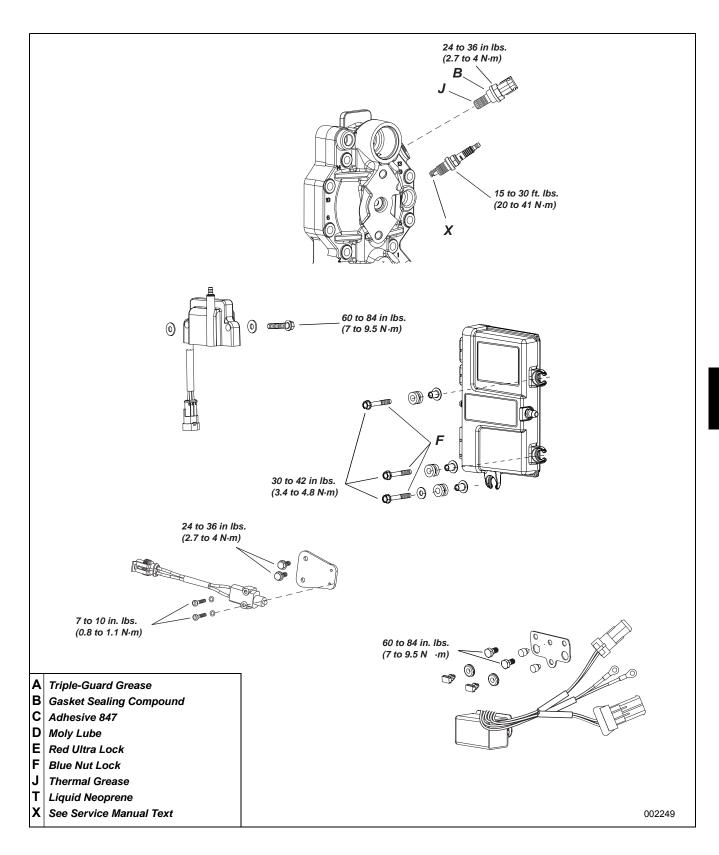
1. Water valve test button

008100

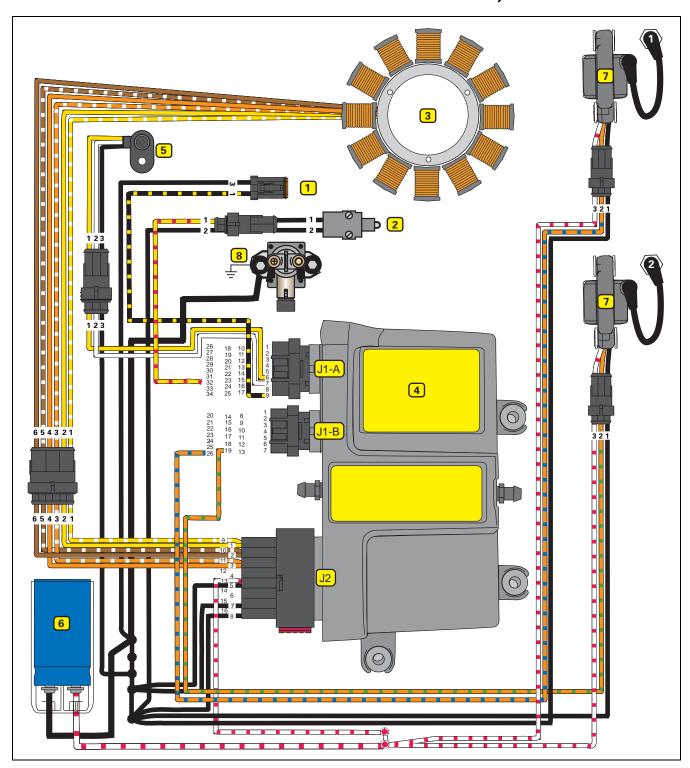
Results:


- No water flow—check for debris in valve assembly and water supply line. Refer to EXHAUST WATER VALVE TEST on p. 150.
- Water appears—make sure fitting into exhaust housing is clear.

ELECTRICAL AND IGNITION

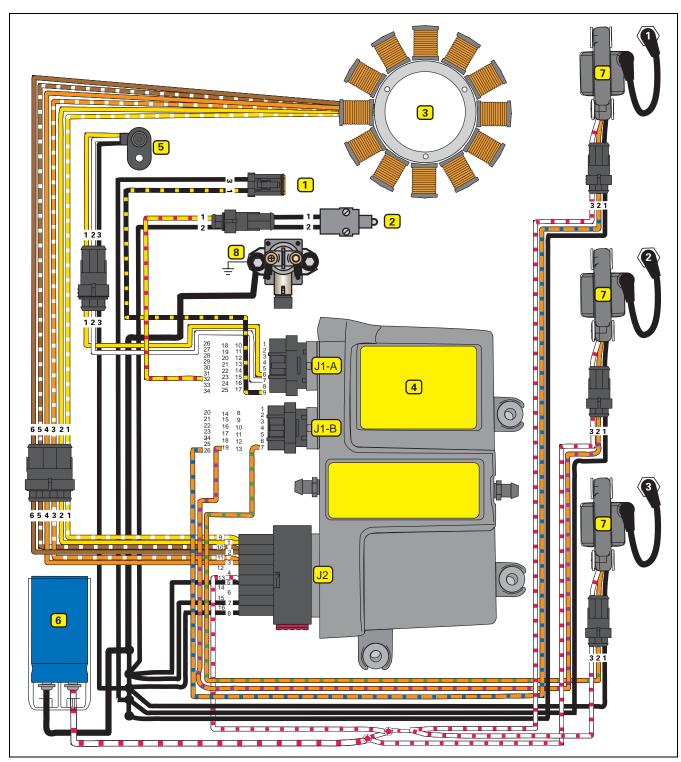

TABLE OF CONTENTS

SERVICE CHART	_
IGNITION SYSTEM CIRCUIT DIAGRAM, 40 – 65 HP	. 134
IGNITION SYSTEM CIRCUIT DIAGRAM, 75 – 90 HP	. 135
ELECTRICAL HARNESS CONNECTIONS	. 136
GROUND CIRCUITS	.138
FUSE	. 138
SENSOR TESTS	. 139
CRANKSHAFT POSITION SENSOR (CPS) TEST	. 139
THROTTLE POSITION SENSOR (TPS) TEST	
ENGINE TEMPERATURE SENSOR TEST	
AIR TEMPERATURE SENSOR (AT) TEST	
STATOR TESTS	. 141
CHARGING SYSTEM TESTS	
ELECTRIC START CIRCUIT	
ELECTRIC START TESTS	
REMOTE CONTROL SWITCH TESTS	. 148
TILT/TRIM RELAY TEST	
EXHAUST WATER VALVE TEST	. 150
SYSTEMCHECK CIRCUIT TESTS	. 151
TACHOMETER CIRCUIT TESTS	
FLYWHEEL AND STATOR SERVICING	
FLYWHEEL REMOVAL	
STATOR SERVICE	
FLYWHEEL INSTALLATION	
IGNITION COIL SERVICING	
IGNITION COIL REMOVAL	
IGNITION COIL INSTALLATION	
TIMING ADJUSTMENTS	
TIMING POINTER	
TIMING VERIFICATION	
TPS CALIBRATION	
ELECTRIC STARTER SERVICING	
STARTER REMOVAL	
STARTER INSTALLATION	
CONNECTOR SERVICING	
DEUTSCH CONNECTORS	
AMP CONNECTORS	
PACKARD CONNECTORS	. 163


SERVICE CHART

SERVICE CHART

IGNITION SYSTEM CIRCUIT DIAGRAM, 40 – 65 HP



- 1. Key switch (stop circuit)
- 2. Neutral switch
- 3. Stator

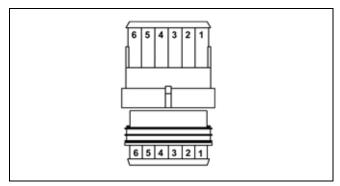
- 4. *EMM*
- 5. Crankshaft position sensor
- 6. Capacitor

- 7. Ignition coil
- 8. Main harness ground

IGNITION SYSTEM CIRCUIT DIAGRAM, 75 – 90 HP

- 1. Key switch (stop circuit)
- 2. Neutral switch
- 3. Stator

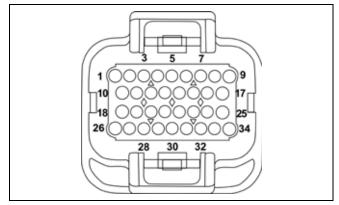
- 4. *EMM*
- 5. Crankshaft position sensor
- 6. Capacitor


- 7. Ignition coil
- 8. Main harness ground

ELECTRICAL HARNESS CONNECTIONS

Inspect wiring and electrical connections. Disassemble and clean all corroded connections. Replace damaged wiring, connectors, or terminals. Repair any shorted electrical circuits. Refer to wiring diagrams and reference charts for specific wiring details.

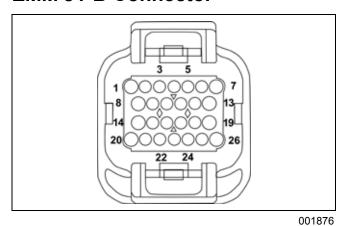
Refer to **CONNECTOR SERVICING** on p. 160.


Engine Harness to Stator Connector

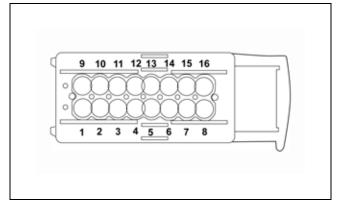
002025

Pin No.	Description of Circuit	Wire Color
1	Stator winding (yellow)	Yellow/White
2	Stator winding (yellow)	Yellow
3	Stator winding (orange)	Orange/White
4	Stator winding (orange)	Orange
5	Stator winding (brown)	Brown/White
6	Stator winding (brown)	Brown

EMM J1-A Connector



001875


Pin No.	Description of Circuit	Wire Color
1	vacant	
2	Diagnostic connector	Red
3	Diagnostic connector	White
4	vacant	
5	vacant	
6	Crankshaft position sensor (CPS)	Yellow
7	Ground, CPS (digital)	White
8	Bootstrap connector (programming)	Blk/Orange
9	Stop circuit	Blk/Yellow
10	Throttle position sensor (TPS) 5 V	Red
11	vacant	
12	vacant	
13	CANbus, NET-L	Blue
14	CANbus, NET-H	White
15	12 V to EMM (fused)	Red/Purple
16	Tachometer	Gray
17	CHECK ENGINE signal, SystemCheck	Tan/Orange
18	TPS	Green
19	Engine temperature sensor	Pink/Black
20	Air temperature sensor	Pink/Blue
21	CANbus, NET-S	Red
22	CANbus, NET-C	Black
23	vacant	
24	LOW OIL signal, SystemCheck	Tan/Black
25	WATER TEMP signal, SystemCheck	Tan
26	TPS ground (analog)	Black
27	Engine temp. sensor ground (analog)	Black
28	Switched B+ to EMM	Purple
29	LOW OIL switch	Tan/Black
30	vacant	
31	vacant	
32	Neutral switch (shift linkage)	Yellow/Red
33	vacant	
34	vacant	

7

EMM J1-B Connector

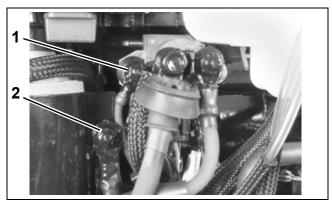
EMM J2 Connector

001877

Pin No.	Description of Circuit	Wire Color
1	Injector, cylinder 2, 75–90 HP	Purple
1	Injector, cylinder 2, 40–65 HP	Green
2	Injector, cylinder 3, 75–90 HP	Green
2	Exhaust water valve, 60–65 HP	Blue/Red
3	vacant	
4	vacant	
5	vacant	
6	NO OIL signal, SystemCheck	Tan/Yellow
7	Ignition, cylinder 3, 75–90 HP	Orange/Green
7	vacant, 40-65 HP	
8	Injector, cylinder 1	Blue
9	vacant	
10	vacant	
11	vacant	
12	vacant	
13	vacant	
14	Injector ground	Black
15	vacant	
16	vacant	
17	vacant	
18	vacant	
19	Ignition, cylinder 2, 75–90 HP	Orange/Purple
19	Ignition, cylinder 2, 40–65 HP	Orange/Green
20	Injector ground	Black
21	Injector ground	Black
22	vacant	
23	Oil solenoid	Blue
24	vacant	
25	vacant	
26	Ignition, cylinder 1	Orange/Blue

Pin No.	Description of Circuit	Wire Color
1	Stator winding, 1S	Yellow
2	Stator winding, 2S	Brown
3	Stator winding, 3S	Orange
4	Fuel pump control	Brown
5	System Ground	Black
6	+12 V out	Red
7	System Ground	Black
8	System Ground	Black
9	Stator winding, 1F	Yellow/White
10	Stator winding, 2F	Brown/White
11	Stator winding, 3F	Orange/White
12	Fuel pump (flyback)	White/Red
13	+55 V, out	White/Red
14	+12 V out	Red
15	vacant	
16	vacant	

GROUND CIRCUITS


All ground circuits are essential to reliable outboard performance. Make sure all ground connections are clean and tight. Refer to wiring diagrams for specific wiring details.

EMM Ground Tests

Disconnect the battery cables at the battery.

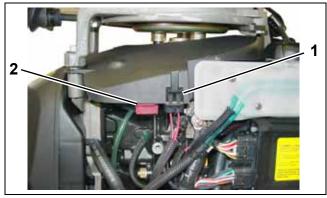
Use an ohmmeter to check continuity of ground circuits. Calibrate the ohmmeter on the high ohms scale. Resistance readings for all ground circuits should be 0 Ω .

- System/power supply grounds: Check continuity between terminal pins 5, 7, and 8 of EMM J2 connector and the main harness ground.
- Injector circuit grounds: Check continuity between terminal pins 14, 20, and 21 of the EMM J1-B connector and the main harness ground.
- Sensor circuit grounds: Check continuity between terminal pins 26 and 27 of the EMM J1-A connector and the appropriate sensor ground connections. Refer to wiring diagrams.

Main harness ground
 Ground stud (battery)

002292

Additional Ground Tests


Check connections and continuity at the following locations:

- Starter solenoid terminal B and main harness ground.
- Trim and Tilt module ground at main harness ground.

FUSE

The engine harness 12 V (B+) circuit is protected by one automotive style 10 amp minifuse.

The fuse is located on the port side of the power-head, in the flywheel cover.

Fuse
 Spare fuse

005004

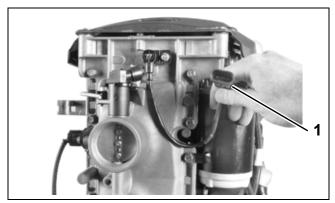
IMPORTANT: Repeat failures of fuse could be the result of faulty connections or accessories. The 12 V accessory circuit (purple wire from terminal "A" of key switch) is often used to power accessories.

SENSOR TESTS

All sensor circuits are dependent on wiring and connections, EMM supplied current (5 V), and sensor resistance. The supplied current flows through the wiring circuit and sensor before returning to the EMM.

IMPORTANT: Use Evinrude Diagnostics software to monitor sensor circuit voltages or values.

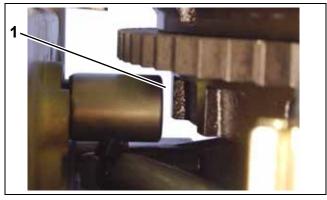
Crankshaft Position Sensor (CPS) Test


Use the Evinrude Diagnostics software CPS Sync and engine RPM displays to confirm a valid CPS signal while the outboard is cranking or running. An RPM display higher than zero indicates a CPS signal to the EMM.

Disconnect the crankshaft position sensor.

Use a digital multimeter to measure sensor resistance between the yellow and white wires. The complete circuit can be tested by measuring between pins 6 and 7 of the EMM J1-A connector.

Sensor Resistance


 $560 \Omega \pm 10\% @ 77°F (25°C)$

CPS Connector

002286

The CPS is mounted to throttle body housing and requires no adjustment. Air gap or clearance to flywheel is fixed at approximately 0.073 in. (1.85 mm). The acceptable clearance is 0.036 to 0.110 in. (1 to 2.8 mm).

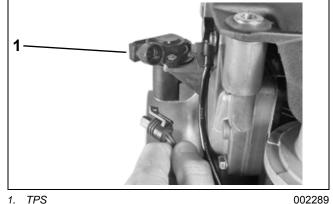
1. CPS gap

006527

Throttle Position Sensor (TPS) Test

Use Evinrude Diagnostics software to monitor TPS voltage while the outboard is running. Voltage should change evenly as sensor lever is moved.

Remove the electrical connector from the throttle position sensor.


Use a digital multimeter to measure sensor resistance.

Sensor Resistance between "A" and "B"

3000 to 7000 Ω @ 77°F (25°C)

Sensor Resistance between "A" and "C"

4000 to 8000 Ω @ 77°F (25°C)

1. TPS

ELECTRICAL AND IGNITION

SENSOR TESTS

Connect red meter lead to terminal "A" and black meter lead to terminal "C." Rotate the sensor lever through its range of travel. Resistance reading must change evenly as the sensor lever is moved.

Connect red meter lead on terminal "B" and black meter lead to terminal "C." Rotate the sensor lever. Resistance reading must change evenly as the sensor lever is moved.

Engine Temperature Sensor Test

Remove the electrical connector from the engine temperature sensor.

Use a digital multimeter to measure sensor resistance.

Engine Temperature Sensor Resistance
680 Ω ± 5% @ 212°F (100°C)
10000 Ω ± 1% @ 77°F (25°C)
32654 Ω ± 2.5% @ 32°F (0°C)

1. Engine temperature sensor

006612

Air Temperature Sensor (AT) Test

Remove the electrical connector from the air temperature sensor.

Use a digital multimeter to measure sensor resistance.

AT Sensor Resistance
680 Ω ± 5.25% @ 212°F (100°C)
10000 Ω ± 1.5% @ 77°F (25°C)
32654 Ω ± 3.0% @ 32°F (0°C)

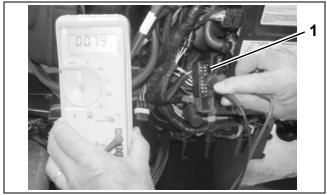
1. AT sensor 006613

STATOR TESTS

The stator consists of 3 windings (4 poles each) on a 5 inch diameter core and generates an output voltage of 55 VAC (1100 watts maximum). This voltage is converted by the *EMM* to provide 12 VDC for battery charging (3 to 5 A at 500 RPM and 25 A from 3000 RPM to WOT) and 55 VDC for fuel injector, and fuel and oil pump operation.

Stator Resistance Tests

Use a digital multimeter to check resistance of stator windings.


Disconnect EMM J2 connector from EMM.

Stator Winding Resistance Specification

Yellow & Yellow / white .670 \pm .020 Ω @ 73°F (23°C)

Brown & Brown / white .670 \pm .020 Ω @ 73°F (23°C)

Orange & Orange / white .670 \pm .020 Ω @ 73°F (23°C)

1. EMM J2 Connector

002462

Connect meter leads to the following pins:

- Yellow/white and yellow (pins 9 and 1)
- Brown/white and brown (pins 10 and 2)
- Orange/white and orange (pins 11 and 3)

IMPORTANT: A reading of less than 2 ohms is acceptable. Make sure meter is calibrated to read 1 ohm or less.

To check for a grounded winding, connect one meter lead to ground and alternately connect the other meter lead to each stator wire. Meter should read no continuity. If meter reads continuity, replace stator.

Stator Voltage Output Test

ELECTRIC START MODELS

Use a digital multimeter to check stator output voltage. Set meter to read 110 VAC output.

A

WARNING

To prevent accidental starting of outboard, disconnect crankshaft position sensor (CPS).

Disconnect CPS.

Disconnect stator (6-pin) connector from the engine harness (6-pin) connector.

Connect Stator Test Adaptor tool, P/N 5005799, to stator connector.

Connect meter leads to terminals of adaptor tool.

With a fully charged battery, crank outboard (300 RPM minimum) and observe meter reading:

- 30 VAC at 300 RPM
- 40 VAC at 400 RPM
- 55 VAC above 500 RPM

1. Stator Test Adaptor

002396

ELECTRICAL AND IGNITION

CHARGING SYSTEM TESTS

ROPE START MODELS

Use a Peak Reading Voltmeter, P/N 507972, to check stator output voltage. Set meter to the 50 VAC scale.

Α

WARNING

To prevent accidental starting of outboard, disconnect crankshaft position sensor (CPS).

Disconnect CPS. Remove spark plugs. Make sure outboard is in NEUTRAL. Refer to **SPARK PLUGS** on p. 90.

Disconnect stator (6-pin) connector from the engine harness (6-pin) connector.

Connect Stator Test Adaptor tool, P/N 5005799, to stator connector.

Connect meter leads to terminals of adaptor tool.

Rotate the flywheel with the starter rope, using a long, steady pull.

Stator output voltage should be approximately 30 VAC.

1. Stator Test Adaptor

006750

IMPORTANT: Index all spark plugs. Refer to Spark Plug **Indexing** on p. 90.

CHARGING SYSTEM TESTS

12 V Charging Circuit

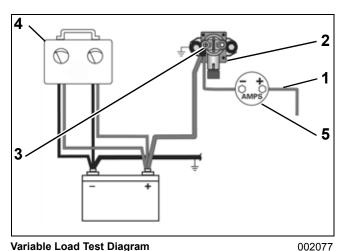
To test the operation of the regulator in the *EMM*, you must be able to run the outboard continuously at approximately 5000 RPM, such as in a test tank or on a marine dynamometer.

The test consists of monitoring the system's response to a partially discharged battery. Use a variable load tester to discharge the battery.

IMPORTANT: The regulator requires voltage to operate. Before proceeding, make sure there is at least 7 V on the positive terminal of the starter solenoid.

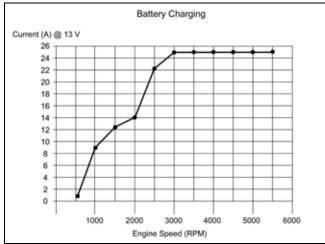
Disconnect the battery cables at the battery.

Use an inductive amp meter or connect a 0 to 50 A ammeter in series between the red wire of engine wire harness (alternator output from *EMM*) and the positive (B+) battery cable terminal of starter solenoid.


Fluke[†] model 334 or 336, Snap-On[†] model MT110 or EETA501, and various other amp meters should be available through local tool suppliers.

Reconnect the battery cables.

Following the manufacturer's directions, connect the variable load tester (carbon pile) across the battery terminals. Stevens model LB-85 and Snap-On model MT540D are examples of testers available.


WARNING

Excessive battery discharge rates might overheat battery causing electrolyte gassing. This might create an explosive atmosphere. Always work in a well ventilated area.

Variable Load Test Diagram

- 1. Red wire (alternator output from EMM)
- Starter solenoid
- Battery cable terminal (B+)
- Variable load tester
- Ammeter

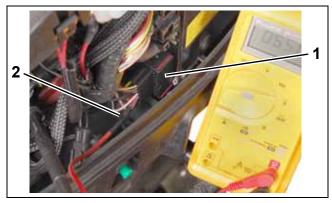
Battery Charging Graph

002076

Start and run the outboard at approximately 5000 RPM. Use the variable load tester to draw the battery down at a rate equivalent to the stator's full output.

 The ammeter should indicate nearly full output, approximately 25 A @ 5000 RPM.

Decrease the battery load toward 0 A.


- Ammeter should show a reduced output. As the current draw decreases, the battery voltage should stabilize at approximately 14.5 V.
- If results vary, check stator BEFORE replacing the *EMM*. Refer to **STATOR TESTS** on p. 141.

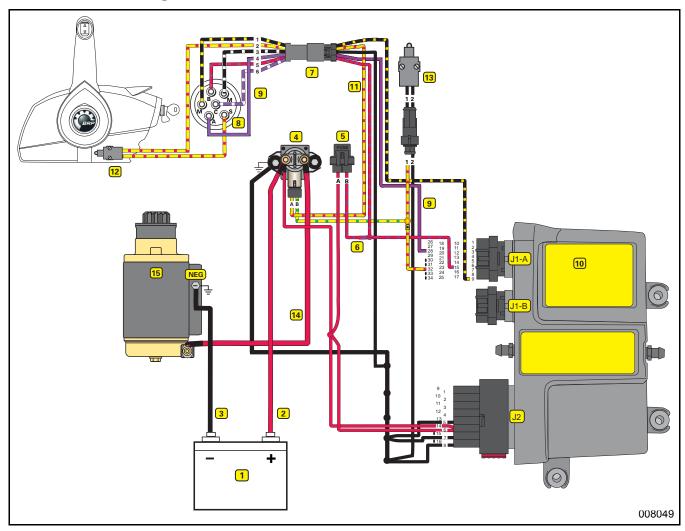
55 V Alternator Circuit

Check battery ground cable for continuity.

With the key switch ON, check battery voltage at battery (12 V).

Then, use Electrical Test Probe Kit, P/N 342677, and a digital multimeter set to read 55 VDC to check voltage on white/red wires at J2 connector of EMM. Voltage at EMM connector should be 0.5 to 1 V less than battery.

Test probe


007261

With outboard running at 1000 RPM, voltage on white/red wires should be 55 V. Voltage readings at a specific speed (RPM) should be steady.

If there is any other reading, refer to STATOR **TESTS** on p. 141. Inspect the stator wiring and connections. Inspect the capacitor wiring, connections, and capacitor. Repair the wiring or replace a faulty capacitor, stator, or EMM.

ELECTRIC START CIRCUIT

Start Circuit Diagram

- 1. Marine battery
- 2. RED wire (POS)
- 3. BLACK wire (NEG)
- 4. Starter solenoid
- 5. Fuse (10 amp)
- 6. RED/PURPLE wire
- 7. Key switch connectors
- 8. Ignition switch

- 9. PURPLE wire (switched B+)
- 10. Engine Management Module (EMM)
- 11. YELLOW/RED wire, start
- 12. Neutral Safety Switch (remote control)
- 13. Neutral Safety Switch (engine)
- 14. RED starter motor cable
- 15. Electric starter motor

Start Circuit Operation

The starter must engage and turn the flywheel. The outboard must crank a minimum of 300 RPM to start.

Starter performance depends on the following:

- Proper battery and cable capacity.
- · Clean, tight cable connections.
- Solenoid activation through the key switch and neutral safety switch.

Refer to **Battery Installation** on p. 33 for battery, terminal, and cable requirements.

Solenoid Wiring

The positive (B+) battery cable connects to a large terminal of the starter solenoid. This terminal also provides the 12 V power supply to the engine harness (red wire) and the 10 A fuse. The red/purple wire from the fuse holder (10 A) provides 12 V to terminal "B" of key switch.

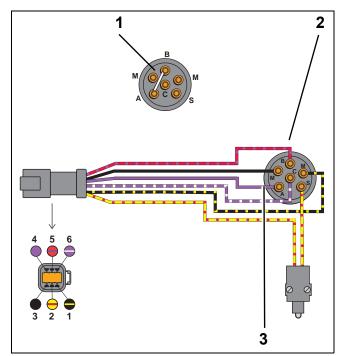
The negative (B₋) battery cable connects to the main ground stud on the starter housing.

Engine Wire Harness

Contains the following circuits:

- Red/purple output wire from fuse provides 12 V to instrument harness.
- Purple wire provides switched 12 V to EMM.
- Yellow/red wire provides switched 12 V to solenoid (terminal "A").
- Black wire provides ground (NEG) to starter solenoid (terminal "B").

Instrument Wire Harness


Contains the following circuits:

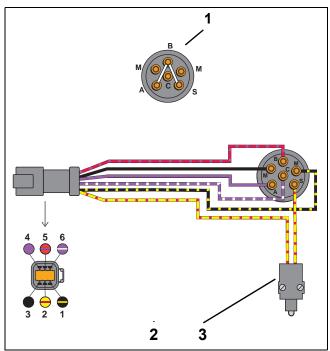
- Red/purple wire provides 12 V to key switch terminal "B".
- Purple wire provides switched 12 V to engine wire harness.
- Yellow/red wire from terminal "S" of key switch provides switched 12 V to solenoid (terminal "A") (key switch in START position).

Key Switch, ON position

12 V is applied to the accessory circuit. Key switch ON:

- Switches 12 V to terminal "A" of key switch and to the purple wires of the wire harnesses.
- Provides 12 V input to terminal 28 of EMM J1-B connector. EMM turns ON.

- 1. Key switch, ON position Continuity between terminals "B" and "A"
- 000691


- Terminal "B", 12 V (Red/purple)
 Terminal "A", 12 V (Purple)

ELECTRIC START TESTS

Key Switch, START Position

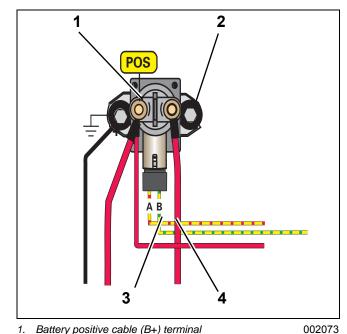
Key switch START:

- · Switches 12 V to terminal "S" of key switch and to the neutral safety switch (in remote control).
- A closed neutral safety switch provides 12 V to the engine wire harness yellow/red wire and solenoid (terminal "A").

- Ignition switch, START position Continuity between terminals "B" and "A"; "B" and "S'
- Terminal "S", 12 V
- 3. Neutral safety switch

ELECTRIC START TESTS

Starter Solenoid Test


Disconnect the B+ (POS) battery cable at the battery.

IMPORTANT: Disconnect all wiring from solenoid terminals before proceeding with this test.

Use a digital multimeter to measure resistance.

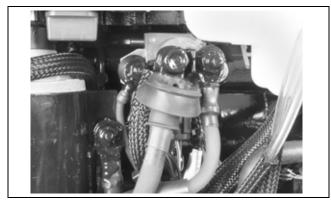
Put one meter lead on the starter positive (+) cable terminal and the other lead on the battery positive (+) cable terminal:

- · Meter must not show continuity (high reading).
- If meter shows continuity (low reading), replace the solenoid.

- Battery positive cable (B+) terminal
- Starter positive (+) cable terminal
- "A" terminal (yellow/red)

000691R

"B" terminal (yellow/green)


Apply B+ to terminal "A" of solenoid and ground (NEG) to terminal "B" of solenoid. Measure resistance between the starter positive (+) cable terminal and the positive battery (+) cable terminal.

- The solenoid must close with an audible click.
- Meter must show continuity (low reading).
- If meter shows no continuity (high reading), replace the solenoid.

146

ELECTRIC START TESTS

After re-installing the solenoid, coat all wires and terminals with *Black Neoprene Dip*.

002292

No Load Current Draw Test

Securely fasten starter in a vise or suitable fixture before proceeding with this check.

Use a battery rated at 500 CCA (60 amp-hr) or higher that is in good condition and fully charged.

Use an inductive ammeter or connect a 0 to 100 amp ammeter in series with a heavy jumper between the battery positive (+) terminal and the starter positive (+) terminal.

Fluke model 334 or 336, Snap-On model MT110 or EETA501, and various other ammeters should be available through local tool suppliers.

Attach or hold a vibration tachometer, such as a *Frahm*[†] *Reed* tachometer, to the starter.

24083

Complete the circuit with a heavy jumper between the battery negative (–) terminal and the starter frame.

Monitor the starter RPM and current draw.

 At 10,500 RPM the ammeter should show a maximum of 30 A.

REMOTE CONTROL SWITCH TESTS

Key Switch Test

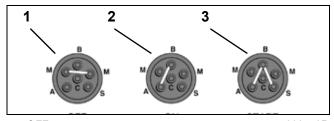
Refer to Wiring Diagrams at back of manual.

Use an ohmmeter or a continuity light to test key switch operation. Replace switch if results are incorrect with any of the following tests.

IMPORTANT: Disconnect battery and key switch wiring before proceeding with the following tests.

Stop/Ground Terminals (M) – Connect meter between the two "M" terminals. Meter must indicate NO continuity at START or ON.

Turn key switch OFF. Meter must indicate continuity.


Accessory Terminal (A) – Make sure the key switch is OFF. Connect the ohmmeter or continuity light between terminals "B" (battery) and "A" (accessory) of key switch. Meter must indicate NO continuity.

Turn switch ON. Meter must indicate continuity.

Turn key switch to START. Meter must continue to indicate continuity.

Starter Terminal (S) – Hold key switch at START. Connect meter between terminal "B" and terminal "S." Meter should indicate continuity.

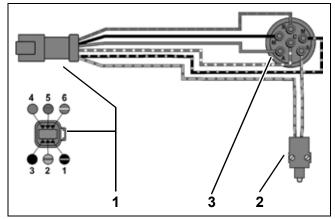
IMPORTANT: The choke function or terminal "C" of the key switch is NOT used.

1. OFF 2. ON

3. START

000443R

Neutral Start Circuit Test


Use an ohmmeter or continuity light to test the continuity of the circuit while positioning the remote control in NEUTRAL, FORWARD, and REVERSE.

IMPORTANT: Turn propeller shaft or disconnect shift cable to allow proper remote control shift action while outboard is not running. Disconnect the instrument harness connector from the key switch harness connector.

Make sure the remote control handle is in NEU-TRAL. Connect meter between terminal 5 (red/purple wire) and terminal 2 (yellow/red wire). Turn the key switch to START. Meter must indicate continuity.

Move the remote control handle to FORWARD and turn the key switch to START. Meter must NOT indicate continuity.

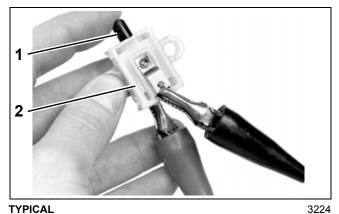
Move the remote control handle to REVERSE and turn the key switch to START. Meter must NOT indicate continuity.

- 1. Key switch harness connector
- . Neutral start switch
- 3. Key switch

IMPORTANT: Reconnect shift cable and instrument harness connector to key switch harness connector.

000443

Neutral Start Switch Test


Use an ohmmeter or a continuity light to test neutral start switch operation.

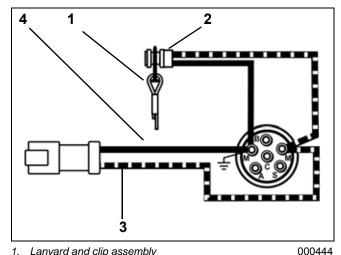
IMPORTANT: All wiring must be disconnected from the switch before proceeding with this test.

Disassemble the remote control and remove the neutral start switch.

Connect one meter lead to each terminal of the switch.

- Meter must indicate continuity when the plunger is depressed
- · Meter must indicate no continuity when the plunger is released.

TYPICAL 1. Plunger


2. Neutral start switch

Replace switch if results are incorrect.

Emergency Stop Switch Test

This switch can be part of the key switch or installed as a separate switch. Either style connects the "M" terminals of the key switch.

The emergency stop switch function grounds the stop circuit wire (black/yellow) when the lanyard clip is removed. One "M" terminal is the ground wire (black) and one "M" terminal is the stop circuit wire (black/yellow).

Lanyard and clip assembly

Emergency stop switch, separate from key switch

Stop circuit wire (black/yellow)

Ground wire (black)

Install the clip on the emergency stop switch or key switch. Start the outboard. Pull the clip from the switch. The outboard must stop running.

TILT/TRIM RELAY TEST

TILT/TRIM RELAY TEST

The tilt and trim (TNT) module contains the circuitry and relays required for power trim and tilt operation.

Tilt and trim module

The tilt and trim switch provides B+ input to areen/white or blue/white wire of the TNT module.

Operation

The relay activates when B+ input from the switch is supplied to terminal 86 of the internal relays.

Terminal 87a connects to ground (B-).

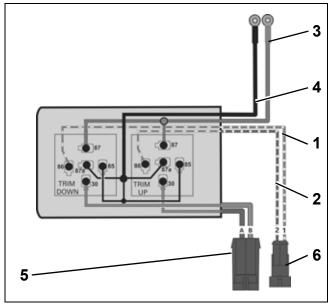
Terminal 87 connects to B+.

Terminal 30 connects TNT motor.

Terminals 87a and 30 are connected when relay is not activated. This supplies ground (B-) connection to TNT motor.

Terminals 87 and 30 are normally open. B+ is applied to terminal 30 when relay is activated. This supplies ground B+ connection to TNT motor.

Refer to Tilt and Trim Module Diagram.

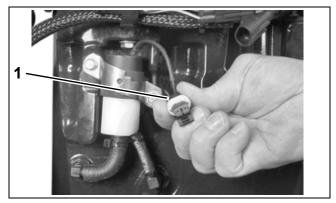

Test Procedure

Make sure red and black wires are connected to 12 V battery power supply.

Set voltmeter to 12 VDC scale. Connect test leads to terminals "A" and "B" of TNT motor connector.

Use a wire jumper to alternately connect B+ to terminals "1" and "2" of tilt and trim switch connector.

The meter must indicate battery voltage (12 V) with B+ connected to either terminal.


Tilt and Trim Module Diagram

002063

- Green/white wire
- Blue/white wire B+, red wire
- B-, black wire
- TNT motor connector TNT switch connector

EXHAUST WATER VALVE TEST

Disconnect electrical connector from water valve solenoid. Use an ohmmeter to measure solenoid resistance.

Water valve electrical connector

004297

Water Valve Solenoid Resistance

295 Ω ± 20 @ 77°F (25°C)

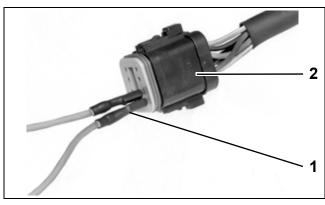
7

SystemCheck CIRCUIT TESTS

Make sure the *SystemCheck* engine monitor can warn the operator during a "NO OIL," "WATER TEMP" or "HOT," "CHECK ENGINE," or "LOW OIL" condition. Check the condition of the warning system and associated wiring and connections. Test the engine monitor regularly and anytime you suspect an alert situation has been missed.

The instrument harness must be connected to the outboard before performing the following tests. Refer to the **Engine Wiring** diagram and the **MWS Instrument Wiring** diagram in the back of this manual.

IMPORTANT: Use jumper wires made with the appropriate terminals to test the warning circuits.



42811

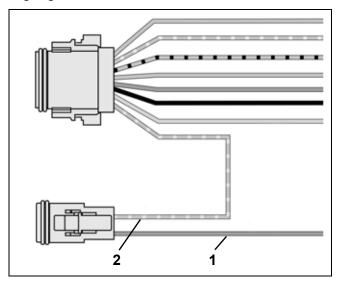
Gauge Self-Test Check

Turn the key switch to ON with the outboard NOT running. The gauge warning lights for NO OIL, WATER TEMP, CHECK ENGINE, and LOW OIL must all light at once, then turn off in sequence, and the warning horn must sound for one-half second.

If the gauge lights do not turn on, turn the key switch OFF. Disconnect the gauge 8-pin connector from the back of the gauge and turn the key switch ON. Test for battery voltage between instrument harness terminal 1 (purple wire) and terminal 2 (black wire).

- Test adapter(s)
- 2. Connector, SystemCheck gauge

42761


- If battery voltage is present, replace the gauge.
- If there is no battery voltage, check that 12 V is present at terminal "B" of the key switch. Check condition of the instrument harness, key switch, and connections.

If the lights worked, but the warning horn did not sound for one-half second, turn the key switch OFF. Disconnect the warning horn 2-pin connector. Substitute a known good warning horn. Turn the key switch ON.

- If the substitute horn beeps, the original horn is defective and must be replaced.
- If the substitute horn does not beep, check for battery voltage between instrument harness 2pin connector, terminal 2 (purple wire) and ground with the key switch ON. Also, check the tan/blue wire for continuity between pin 8 of the 8-pin connector and pin 1 of the 2-pin connector.
- If battery voltage is present at the purple wire and the tan/blue wire has continuity between

SystemCheck CIRCUIT TESTS

the two connectors, replace SystemCheck gauge.

Purple wire
 Tan/blue wire

DRC6280

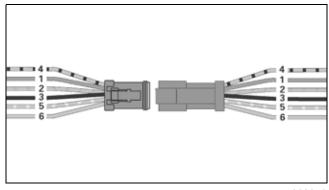
Turn the key switch OFF and reconnect all disconnected circuits.

CHECK ENGINE Circuit Test

Separate the 6-pin *SystemCheck* connector of MWS instrument harness from engine harness. Black wire (pin 3) must be grounded.

Using a jumper wire, connect tan/orange wire (pin 2) to a clean engine ground.

Turn the key switch ON. After the normal self-test sequence, the CHECK ENGINE light should stay on.


- If the CHECK ENGINE light is not on, test circuit for continuity. Check continuity of the MWS instrument harness (tan/orange wire).
- Check continuity of the engine wire harness between terminal 2 (tan/orange wire) of the SystemCheck connector and pin 17 of the EMM J1-A connector.

Turn the key switch OFF and reconnect all disconnected circuits.

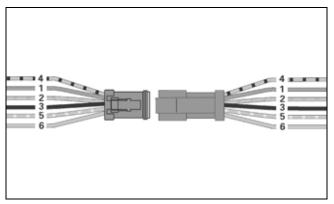
WATER TEMP/ HOT Circuit Test

The tan wire of engine harness and the MWS harness receives a signal from the *EMM*. The *EMM* receives information from the temperature sensor on the cylinder head.

Using a jumper wire, connect tan wire (pin 6) of the engine harness connector to a clean engine ground.

002079

Turn the key switch ON. After the normal self-test sequence, the gauge WATER TEMP / HOT indicator should stay on.


 If LED is not on, test circuit for continuity. Test for continuity of both the engine harness (tan wire) and the MWS instrument harness (tan wire).

Turn the key switch OFF and reconnect all disconnected circuits.

IMPORTANT: To test the temperature sensor itself, refer to **Engine Temperature Sensor Test** on p. 140.

LOW OIL Circuit Test

Turn the key switch ON. Using a jumper wire, connect tan/black wire (pin 4) of the engine harness connector to a clean engine ground. The LOW OIL light should turn on after 40 seconds.

002079

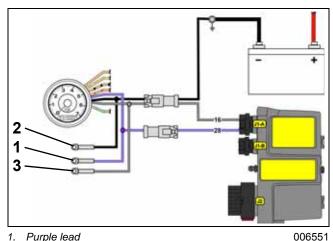
If the LOW OIL light does not turn on after connecting the terminal to ground, test circuit for continuity.

Turn the key switch OFF and reconnect all disconnected circuits.

NO OIL Circuit

Separate the 6-pin SystemCheck connector of MWS instrument harness from engine harness. Black wire (pin 3) must be grounded.

Using a jumper wire, connect tan/yellow wire (pin 5) to a clean engine ground.


Turn the key switch ON. After the normal self-test sequence, the NO OIL light should stay on.

- If the NO OIL light is not on, test circuit for continuity. Test for continuity of the MWS instrument harness (tan/yellow wire).
- Test for continuity of the engine wire harness between terminal 5 (tan/yellow wire) of the SystemCheck connector and pin 24 of the EMM J1-A connector.

Turn the key switch OFF and reconnect all disconnected circuits.

TACHOMETER CIRCUIT TESTS

Check voltage at the battery. Use this reading as a reference for battery voltage.

- Purple lead
- Black lead
- Gray lead

Connect the red meter lead to the tachometer purple wire and the black meter lead to the tachometer black wire (key ON, outboard NOT running).

- If meter shows battery voltage, go to next step.
- If meter shows less than battery voltage, check the purple, red/purple, and black wiring circuits: fuse, key switch, and battery connections.

Disconnect gray and black wires at tachometer. Set Fluke 29 Series II meter, or equivalent, to Hz scale. Connect meter between gray wire and black wire. With outboard running at 1000 RPM. meter should indicate 90 to 105 Hz.

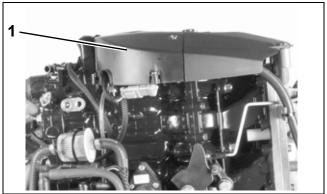
- If meter reads 90 to 105 Hz, replace tachome-
- If meter reads low or no signal, confirm output on gray wire at pin 16 of EMM J1-A connector.
 - Reading OK Check condition of tachometer circuit (gray wire). Repair as needed.
 - Reading not OK Check connection at EMM; replace faulty EMM.

FLYWHEEL AND STATOR SERVICING

FLYWHEEL AND STATOR SERVICING

IMPORTANT: Weak flywheel magnets can cause low alternator output and affect outboard performance. Weak flywheel magnets can also cause low readings on ignition test equipment, such as a peak-reading voltmeter, which might cause unnecessary parts replacement.

An accurate test of alternator output can help determine the flywheel's condition. Refer to **CHARGING SYSTEM TESTS** on p. 142.


Flywheel Removal

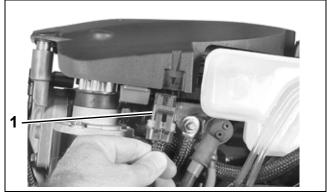
▲ WARNING

To prevent accidental starting while servicing, disconnect the battery cables at battery.

Remove the recoil starter assembly (rope start models). Refer to **RECOIL STARTER REMOVAL** on p. 399.

Remove the electrical cover from flywheel cover.

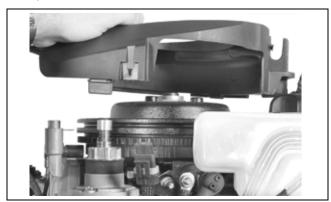
Electrical cover


Disconnect wiring harness and remove wiring from cover.

1. MWS harness

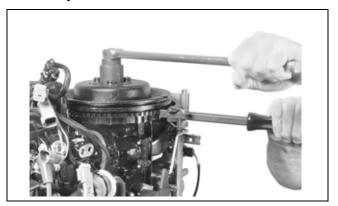
002086

Remove fuse holder from flywheel cover.



Fuse holder

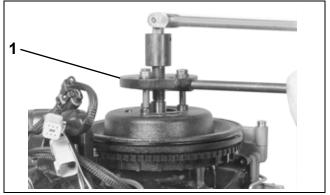
002084


002094

Lift flywheel cover to remove.

002087

Use Flywheel Holder, P/N 771311, or equivalent, and a 1 5/16 in. socket to remove flywheel nut. Discard flywheel nut.

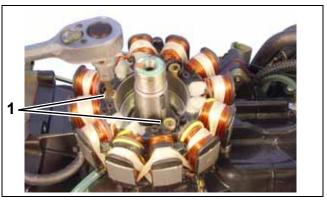

002088

Apply Moly Lube grease to the threads of the puller pressing screw, P/N 307637, and the center hole of the crankshaft.

Assemble the following components from Universal Puller Set. P/N 378103:

- Body, P/N 307636
- Screw, P/N 307637
- Handle, P/N 307638
- Three screws P/N 309492
- Three washers, P/N 307640

Put the puller on flywheel with body flat side up. Attach the puller body with the three shoulder screws and washers. Hold puller body with handle, and tighten pressing screw until flywheel releases. Turn the center screw and lift the flywheel off of the crankshaft.



Universal puller 002089

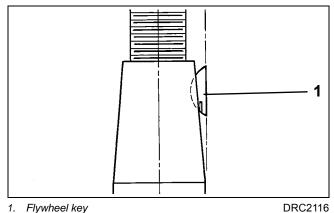
Stator Service

Disconnect stator harness connector.

Remove three allen head screws to remove stator.

Stator screws

006486


To install stator, position stator on cylinder block. Apply Nut Lock to screw threads. Install screws and tighten in crossing pattern to a torque of 84 to 106 in. lbs. (9.5 to 12 N·m).

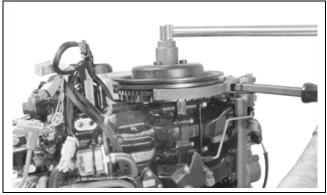
Flywheel Installation

CAUTION

To avoid injury, keep hands and fingers clear from underside of flywheel. Flywheel can snap toward stator with great magnetic force.

Install the outer edge of flywheel key parallel with centerline of crankshaft.

1. Flywheel key


IGNITION COIL SERVICING

Thoroughly clean the crankshaft and flywheel tapers with *Cleaning Solvent* and let dry.

002093

Align the flywheel keyway and install flywheel. Coat the threads of flywheel nut with *Triple-Guard* grease. Install the washer and nut and tighten to a torque of 100 to 115 ft. lbs. (136 to 156 N·m).

002090

Replace flywheel cover and recoil starter (rope start models).

IMPORTANT: Check ignition timing after flywheel removal or replacement. Refer to **TIMING ADJUSTMENTS** on p. 157.

IGNITION COIL SERVICING

Ignition Coil Removal

Remove spark plug lead from ignition coil and disconnect ignition coil electrical connector.

Remove two ignition coil retaining screws.

Do not lose the rubber washers between coil and bracket.

1. Screws 008187

Ignition Coil Installation

Install one rubber washer on each screw and install screw through ignition coil.

Install remaining rubber washers on screws between coil and bracket.

1. Rubber washers

008188

Install coil on bracket. Tighten screws to a torque of 60 to 84 in. lb. (7 to 9.5 N·m).

Install spark plug lead on ignition coil and connect ignition coil electrical connector.

TIMING ADJUSTMENTS

Timing Pointer

A

WARNING

To prevent accidental starting while servicing, disconnect the battery cables at the battery. Twist and remove all spark plug leads.

The timing pointer must be adjusted to indicate top dead center (TDC) of the number 1 piston. This reference to the position of the number 1 piston is used to synchronize the electronic timing controlled by the *EMM* with the mechanical position of the number 1 piston.

Always check timing pointer adjustment before using the *Evinrude Diagnostics* software Timing Verification procedure.

Remove spark plugs. Rotate the flywheel clockwise to approximately 30° ATDC.

Install Piston Stop Tool, P/N 342679, into the spark plug hole of the number 1 cylinder.



1. Piston stop tool

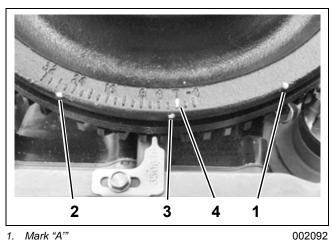
006493

Rotate flywheel **counterclockwise** until the number 1 piston contacts the tool. Keep pressure on the flywheel to position the piston firmly against

the tool. Mark the flywheel directly across from the pointer. Label this mark "A."

1. Timing pointer

006552


Rotate the flywheel **clockwise** until the piston contacts the tool. Mark the flywheel directly across from the pointer. Label this mark "B." Rotate flywheel **counterclockwise** slightly to release tool then remove it from spark plug hole.

Use a flexible measuring device, such as a piece of string, to find the exact center between marks "A" and "B." Measure along the edge of the flywheel. Mark and label the center point "C." If mark "C" and the cast-in TDC boss on flywheel are in alignment, the timing pointer is in the correct location.

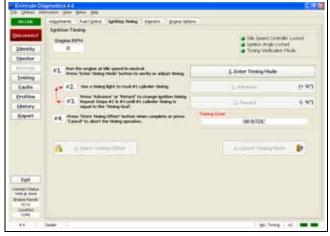
If the pointer alignment is NOT correct, rotate the flywheel **clockwise** to align the mark "C" with the pointer. Hold the flywheel in this position. Loosen the pointer retaining screw and adjust the pointer

TIMING ADJUSTMENTS

location to align with the cast-in TDC boss on the flywheel. Tighten retaining screw.

- 1. Mark "A"
- 2. Mark "B"
- Mark "C"
- TDC boss

Repeat the entire adjustment process to make sure pointer is aligned correctly.


Install spark plugs. Refer to Spark Plug Indexing on p. 90.

Timing Verification

Use Evinrude Diagnostics software to synchronize the mechanical timing of the outboard with the electronic timing of the EMM.

Start the outboard.

Use the Settings/Ignition Timing screen of the diagnostics software and follow the on-screen instructions.

Ignition Timing Screen

008085

Check ignition timing after any of the following procedures:

- Powerhead replacement
- Crankshaft replacement
- Flywheel removal or replacement
- CPS replacement
- EMM replacement
- EMM software replacement (reprogramming)

IMPORTANT: Make sure the timing pointer is set and the outboard reaches operating temperature before making any timing adjustments.

TPS Calibration

Use Evinrude Diagnostics software to tell the *EMM* what throttle position sensor voltage is when the throttle plates begin to open.

Set TPS Calibration after replacing or adjusting any throttle body or throttle linkage parts.

Remove the lower engine covers and air silencer.

Do NOT start the outboard.

On the Settings/Adjustments screen of the diagnostics software, click the "Set TPS Calibration" button.

1. TPS Calibration button

While holding the throttle plates closed, advance the throttle linkage until it stops. The "Measured TPS Calibration" field on the screen will increase.

Click the "Working" button in the software to calibrate the TPS.

Install the air silencer and lower engine covers.

7

ELECTRIC STARTER SERVICING

Starter Removal

IMPORTANT: Do not clean the starter drive while the starter motor and drive are installed on the powerhead. The cleaning agent could drain into the starter motor, washing dirt from the drive into the starter bearings and commutator.

Disconnect the battery cables at the battery.

Remove lower motor covers and air silencer. Refer to **Lower Cover Removal** on p. 96.

Remove the starter positive (+) cable from post on starter. Remove the battery negative cable (-) from the double-ended stud.

Remove two starter mounting screws and doubleended stud. Remove the starter.

1. Screws 008189

Starter Installation

Apply *Triple-Guard* grease to the threads of the two starter screws, the double-ended stud, and also to the washers.

Position the starter and install the screws and washers. Tighten screws to a torque of 168 to 192 in. lbs. (19 to 21 N·m).

Attach starter positive (+) cable to post with lock washer and nut; tighten securely.

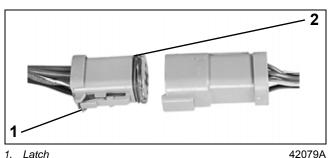
Install the battery negative cable (–) to the double-ended stud.

Coat connections with Black Neoprene Dip.

1. Black Neoprene Dip

008190

CONNECTOR SERVICING

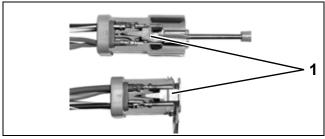

CONNECTOR SERVICING

DEUTSCH Connectors

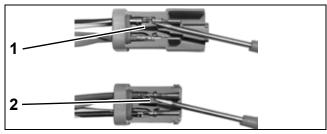
IMPORTANT: Electrical Grease is recommended. Incorrect grease application can cause electrical or warning system problems.

To disconnect the connector, press the latch and pull the connectors apart.

To connect the connector, confirm that the seal is in place. Clean off any old grease and dirt from connectors. Apply a light coat of Electrical Grease to seal only. Push connectors together until latched.



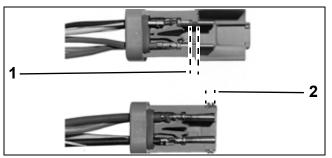
I atch


Seal

Terminal Removal

Use hook-end of Connector Service P/N 342667, to pull out wedge from receptacle, or use other end of tool to pry out wedge from plug. Use needle-nose pliers to remove wedge from 3-pin receptacle.

Wedge 42327 Release terminal latch and gently pull on wire.

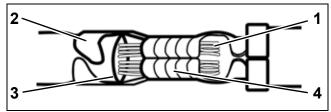

Terminal latch (plug)

Terminal latch (receptacle)

42329

Terminal Installation

Push terminal through seal until it locks into place. Fill connector with Electrical Grease to 1/32 in. (0.8 mm) below ledge or end of plug.


Ledge of plug End of plug

42330

Push wedge in until latched. Wedge in 2-pin receptacle is not symmetrical; position latch shoulders next to terminals.

Crimping Terminals

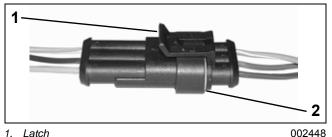
Strip insulation back 3/16 in. (5 mm). Place terminal in 18-gauge notch of Crimping Pliers, P/N 322696. Position end of wire strands in terminal past wire crimp area, and position end of insulation past insulation crimp area. Capture all wire strands in crimp; leave no loose strands. Crimp wire securely. Do not solder. Crimp insulation in 14/16-gauge notch of crimping pliers.

DRC6205

- End of wire strands Insulation crimp area
- End of insulation
- Wire crimp area

AMP Connectors

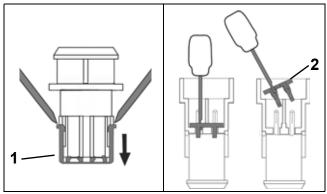
IMPORTANT: Always use the appropriate meter test probes and adapters when testing components fitted with these terminals. Electrical grease is NOT used on *AMP* connectors.


SUPERSEAL 1.5

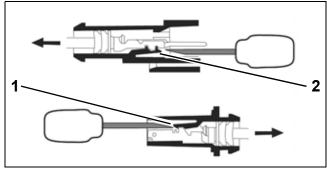
Disconnect

Lift latch. Pull connectors apart.

Connect


Confirm the seal is in place. Push connectors together until latched.

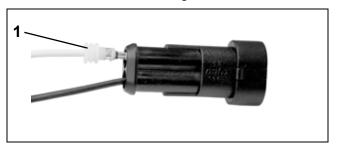
Latch
 Seal


Terminal Removal

Use Secondary Lock Tool, P/N 777078, to release anti-backout device of connector housing. Next, use Primary Lock Tool, P/N 777077, to release locking tab of connector housing. Release locking tab and pull on wire to remove from connector housing.

- 1. Anti backout device, plug
- 2. Anti backout device, receptacle

002449 002450

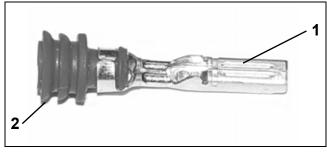

Locking tab, plug

2. Locking tab, receptacle

002447

Terminal Installation

Align terminal with connector housing. Push connector and seal into housing until seated.


1. Terminal and seal

002451

Align anti-backout device with connector housing and terminals. Use Secondary Lock Installer, P/N 777079, to seat device in connector.

Crimping Terminals

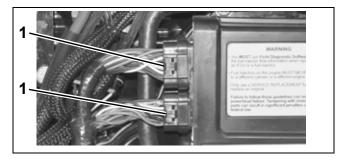
Crimping *Superseal 1.5* terminals requires *AMP* Crimp Tool with dies, P/N 777281.

1. Terminal

2. Seal

CONNECTOR SERVICING

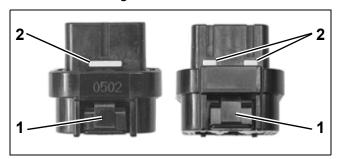
SUPER SEAL


The J1-A and J1-B connectors of the *EMM* are *AMP Super Seal* connectors.

Disconnect

Depress BOTH latches and pull connector from plug.

Connect


Push connector into plug until latches engage.

1. Latch 002118

Terminal Removal

Open lock mechanism and remove terminal from connector housing.


1. Latch

2. Lock mechanism

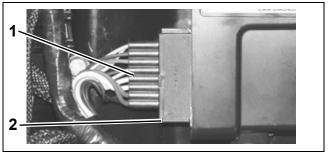
002453

Terminal Installation

Push terminal through seal until it is seated in connector housing. Close lock mechanism.

1. Terminal 002454

POWER TIMER SERIES

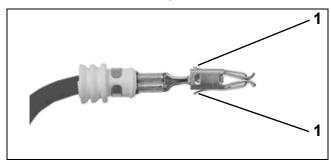

The J2 connector of the *EMM* is an *AMP Power Timer Series* connector.

Disconnect

Use a screw driver to open latch. Pull connector from plug.

Connect

Push connector until seated in plug. Close latch completely.


1. J2 connector

002120

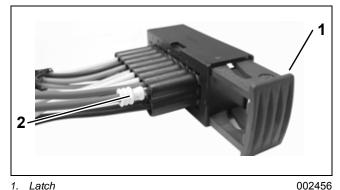
2. Latch (closed)

Terminal Removal

Use Terminal Release Tool, P/N 351413, to release BOTH locking mechanisms of connector. Pull terminal from housing.

Locking mechanism(s)

002455



1. Terminal release tool

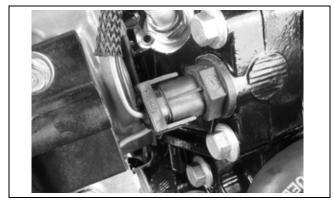
002313

Terminal Installation

Align terminal with connector housing and push terminal with seal into connector housing until seated.

2. Terminal with seal

Packard Connectors


IMPORTANT: Always use the appropriate meter test probes and adapters when testing components fitted with these terminals.

Disconnect

Lift latch(s). Remove connector.

Connect

Confirm the seal is in place. Push connector onto housing until latched.

DSC02124

Terminal Removal

A tab on the back side of the terminal engages a shoulder in the connector housing to hold the terminal in place. The terminal is removed by releasing the tab and then pushing the terminal and wire through connector housing.

Insert a thin tool into the connector above the terminal to release tab.

DRC5940a

Terminal Installation

Install wire gasket on wires and feed wires through the correct terminal position of the connector housing. Terminal is crimped onto wire and then pulled back into connector housing until locking tab engages and terminal is seated.

002304

Crimping Terminals

Strip insulation back 3/16 in. (5 mm). Position end of wire strands in terminal past the wire crimp area and the end of insulation in the insulation crimp area of the terminal.

Capture all wire strands in crimp; leave no loose strands. Crimp wire and insulation securely using crimping pliers.

NOTES

Technician's Notes	Related Documents	
	Bulletins	
	Instruction Sheets	
-		
	Other	

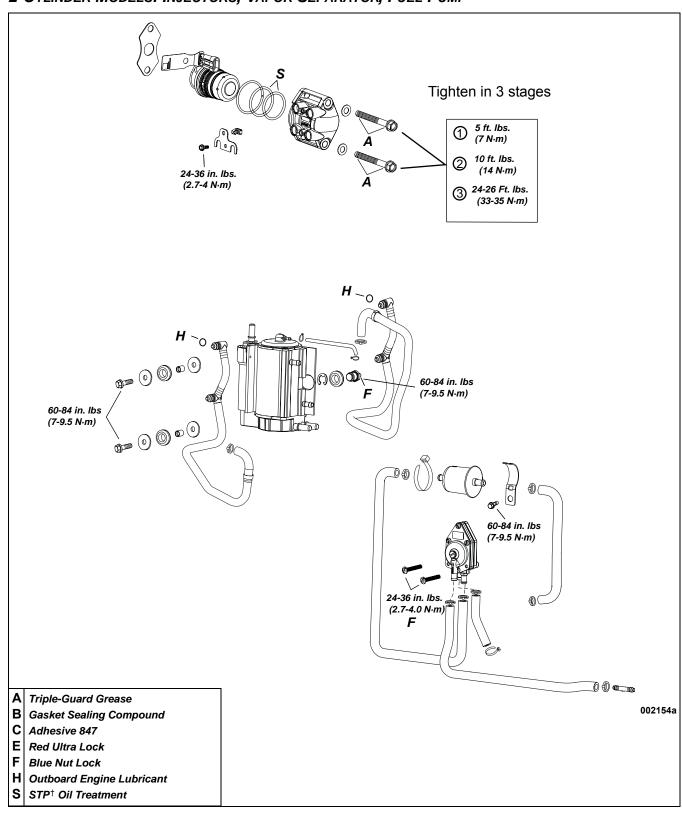
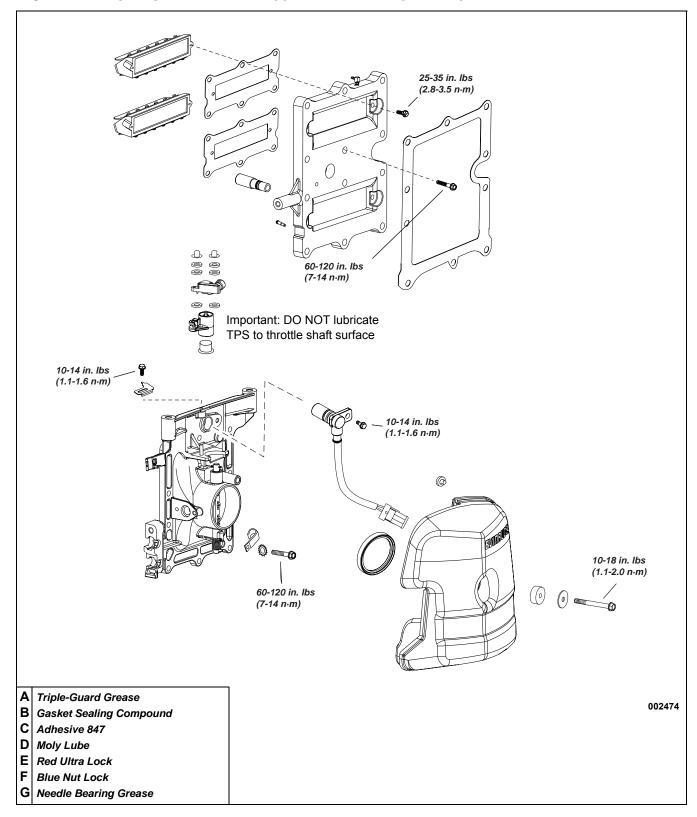
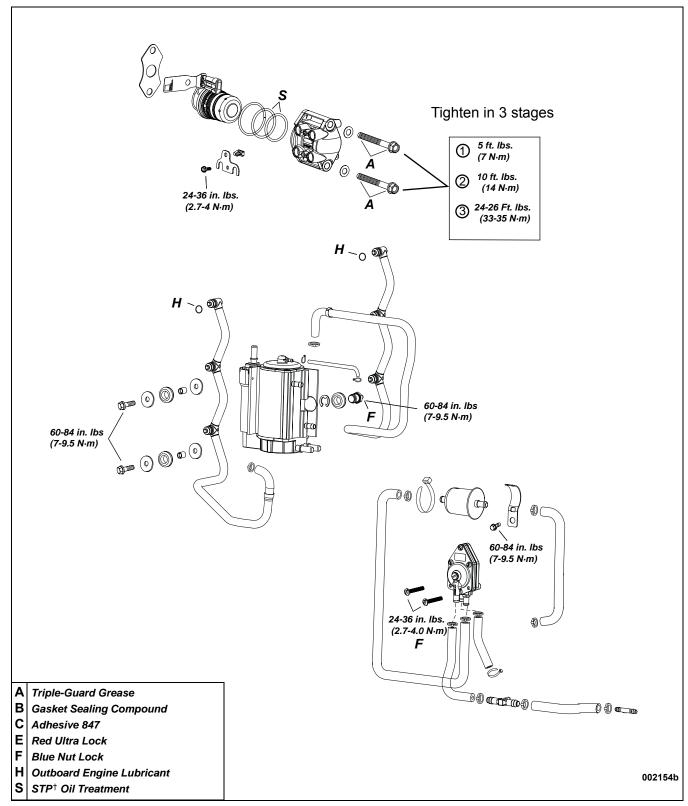
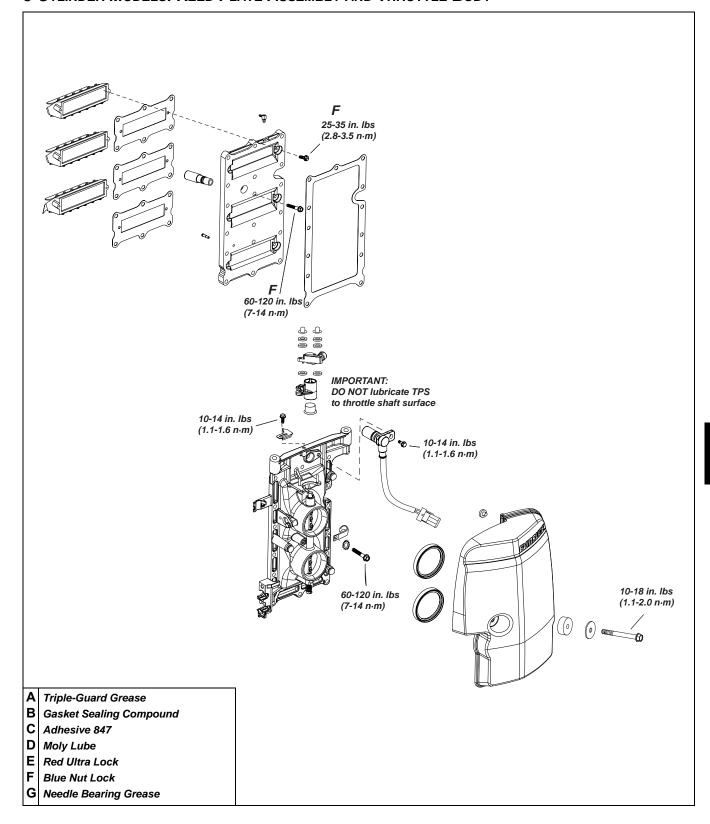

FUEL SYSTEM

TABLE OF CONTENTS

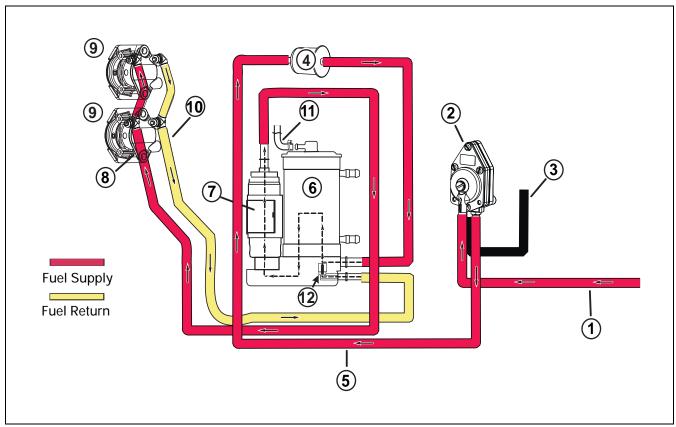

SERVICE CHART	. 166
FUEL SYSTEM HOSE ROUTING	.170
FUEL SYSTEM CIRCUIT DIAGRAMS	.172
COMPONENTS	.174
FUEL LIFT PUMP	. 174
FUEL FILTER	.174
VAPOR SEPARATOR	.174
FUEL CIRCULATION PUMP	. 176
FUEL MANIFOLDS	
FUEL INJECTORS	. 176
FUEL SYSTEM TESTS	. 178
FUEL SYSTEM PRESSURE TEST	
PRESSURE REGULATOR TEST	
VAPOR SEPARATOR VENT CHECK	
FUEL INJECTOR PRESSURE TEST	
FUEL INJECTOR RESISTANCE TEST	
CIRCULATION PUMP RESISTANCE TEST	
LIFT PUMP PRESSURE TEST	
LIFT PUMP VACUUM TEST	
LIFT PUMP DIAPHRAGM TEST	
ANTI-SIPHON VALVE TEST	_
FUEL COMPONENT SERVICING	
RELIEVING FUEL SYSTEM PRESSURE	
FUEL FILTER SERVICE	_
FUEL LIFT PUMP SERVICE	_
VAPOR SEPARATOR SERVICE	
FUEL MANIFOLD SERVICE	
FUEL INJECTOR SERVICE	
INTAKE MANIFOLD SERVICE	. 189

SERVICE CHART


2-CYLINDER MODELS: INJECTORS, VAPOR SEPARATOR, FUEL PUMP

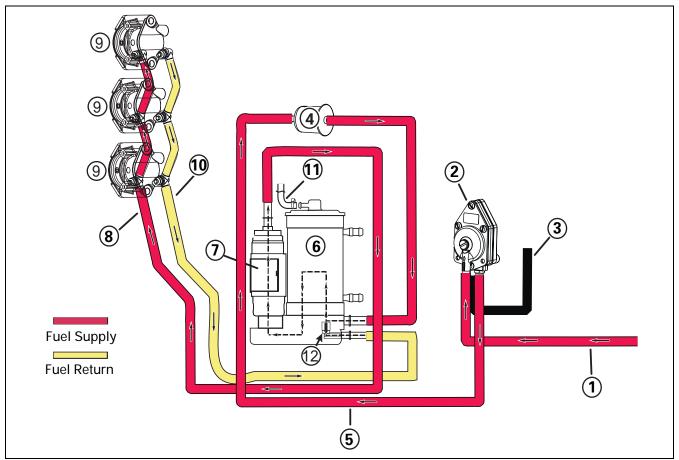

2-CYLINDER MODELS: REED PLATE ASSEMBLY AND THROTTLE BODY

3-CYLINDER MODELS: INJECTORS, VAPOR SEPARATOR, FUEL PUMP



3-CYLINDER MODELS: REED PLATE ASSEMBLY AND THROTTLE BODY

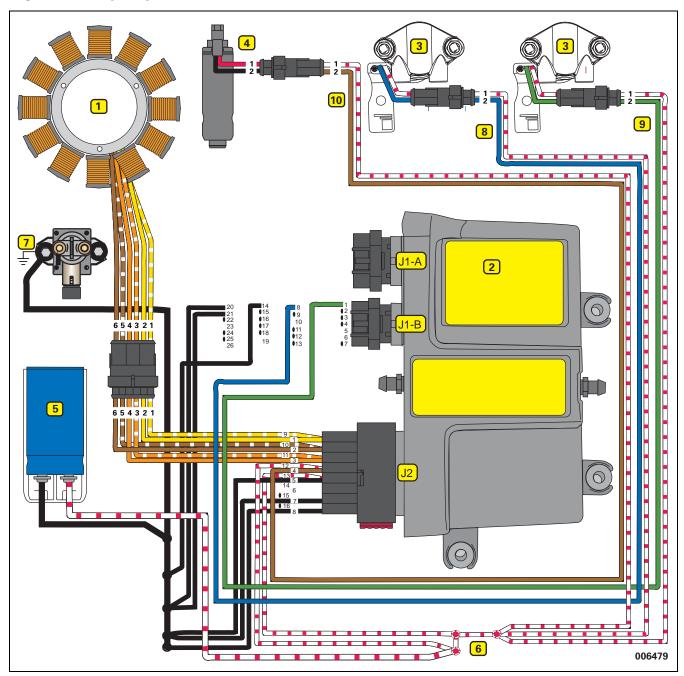
FUEL SYSTEM HOSE ROUTING


2-CYLINDER MODELS

002148

- 1. Fuel supply from boat fuel system
- 2. Fuel lift pump (2 to 8 psi)
- 3. Pulse hose from cylinder/crankcase
- 4. Fuel filter
- 5. Fuel supply to vapor separator
- 6. Vapor separator
- 7. Electric fuel circulation pump (20 to 30 psi)
- 8. Fuel supply manifold
- 9. Fuel injector(s)
- 10. Fuel return manifold
- 11. Vent hose to intake manifold
- 12. Pressure regulator (high pressure)

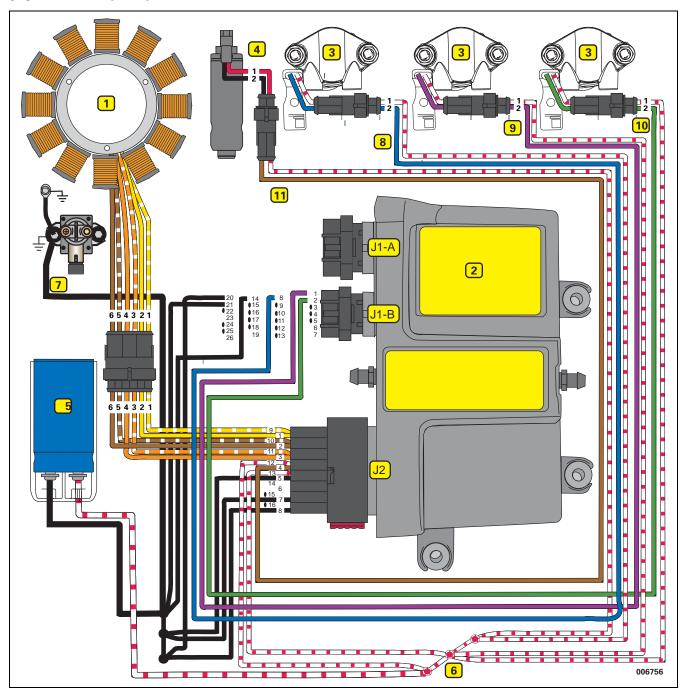
3-CYLINDER MODELS



002148a

- 1. Fuel supply from boat fuel system
- 2. Fuel lift pump (2 to 8 psi)
- 3. Pulse hose from cylinder/crankcase
- 4. Fuel filter
- 5. Fuel supply to vapor separator
- 6. Vapor separator
- 7. Electric fuel circulation pump (20 to 30 psi)
- 8. Fuel supply manifold
- 9. Fuel injector(s)
- 10. Fuel return manifold
- 11. Vent hose to intake manifold
- 12. Pressure regulator (high pressure)

FUEL SYSTEM CIRCUIT DIAGRAMS


2-CYLINDER MODELS

- 1. Stator
- 2. *EMM*
- 3. Fuel injector
- 4. Fuel circulation pump
- 5. Capacitor
- 6. WHITE/RED (55 V)
- 7. BLACK ground wires
- 8. BLUE

- 9. GREEN
- 10. BROWN

3-CYLINDER MODELS

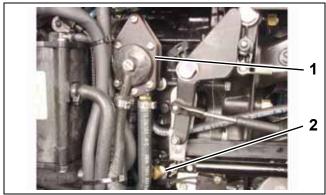
- 1. Stator
- 2. *EMM*
- 3. Fuel injector
- 4. Fuel circulation pump
- 5. Capacitor
- 6. WHITE/RED (55 V)
- 7. BLACK ground wires
- 8. BLUE

- 9. PURPLE
- 10. GREEN (2)
- 11. BROWN

FUEL SYSTEM COMPONENTS

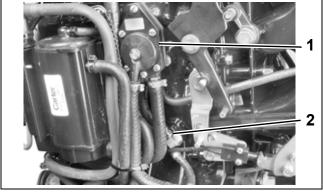
COMPONENTS

The fuel system includes the following components:


- Fuel Lift Pump
- Fuel Filter
- Vapor Separator
- Fuel Circulation Pump
- Fuel Supply Manifolds
- Fuel Injectors
- · Fuel Return Manifolds

Fuel Lift Pump

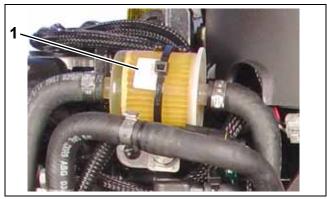
The fuel lift pump is a mechanical, pressure-pulse pump. The diaphragm of the pump is driven by a pulse hose that connects to the cylinder/crank-case assembly.


Fuel lift pump pulse hose location:

2-Cylinder Models: Number 2 cylinder
 3-Cylinder Models: Number 3 cylinder

2-Cylinder models1. Fuel lift pump2. Pulse hose fitting

006558


3-Cylinder models1. Fuel lift pump2. Pulse hose fitting

002314

Vacuum from the fuel lift pump pulls fuel from the fuel tank. Once fuel reaches the pump, internal pump pressure forces the fuel from the pump through the fuel filter and into the vapor separator.

Fuel Filter

The fuel filter protects the vapor separator and the high-pressure components of the fuel system from contaminants. Refer to **INSPECTION AND MAINTENANCE SCHEDULE** on p. 80 for service frequency.

1. Filter 002145

Vapor Separator

The vapor separator:

- Serves as a water-cooled fuel reservoir to accumulate incoming fuel from the fuel lift pump and from the fuel return manifold.
- Contains a float controlling the venting of fuel vapors.
- Contains a fuel pressure regulator for the high pressure fuel system.

The vapor separator is serviced as an assembly and includes the fuel circulation pump.

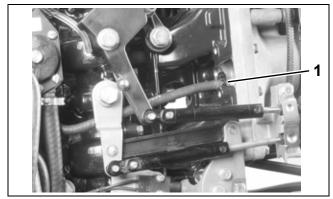
Vapor Separator Assembly
1. Circulation pump

006555

Fuel Reservoir

The vapor separator accumulates fuel in an internal fuel reservoir and supplies fuel to the electric circulation pump. It is water-cooled to enhance vapor separating capabilities.

Cooling


Water is used to cool the fuel as it flows through the vapor separator. The cooling passage of the separator self-drains when the outboard is stored vertically. Refer to **HOSE ROUTING AND WATER FLOW DIAGRAMS** on p. 212.

Venting

The fuel vapor vent regulates fuel vapor pressure in the reservoir.

1. Vent 005007

1. Vent hose connection to intake

002180

The vapor separator vent is opened and closed by a float valve. The float valve moves with the fuel level in the fuel chamber. Hot fuel causes an increase in vapor pressure. This results in a lower fuel level in the vapor separator. The float valve drops and the vent opens. This allows fuel vapor to flow to the intake manifold through the vent hose.

As the vapor pressure in the vapor separator decreases, the fuel level begins to increase. An increase in the fuel level raises the float valve and the vent closes.

Pressure Regulator

The fuel pressure regulator helps maintain consistent fuel pressure in the fuel system.

Fuel returning from the injectors enters the fuel chamber of the vapor separator through a pressure regulator. The pressure regulator maintains approximately 20 to 30 psi (138 to 207 kPa) of fuel pressure in the high pressure side of the fuel system.

FUEL SYSTEM COMPONENTS

Fuel Circulation Pump


The fuel circulation pump is an electric high pressure fuel pump.

Fuel Supply

The pump is mounted to the vapor separator and draws fuel from the fuel chamber. It pumps pressurized fuel through a fuel supply manifold connected to the fuel injectors.

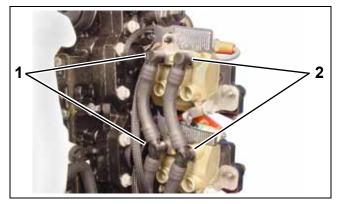
Electrical Circuit

The circulation pump is controlled by the *EMM* and operates on the 55 V circuit. The outboard must be cranking or running (CPS input to *EMM*) for the circulation pump to be activated. The *EMM* controls pump operation by rapidly connecting and disconnecting the pump's internal coil to ground.

1. Fuel pump electrical connector

006557

Fuel Manifolds


The fuel supply and return manifolds route fuel through the high pressure side of the fuel system.

Fuel Supply Manifold

The fuel supply manifold supplies pressurized fuel to the inlet port of each fuel injector.

Fuel Return Manifold

The fuel return manifold provides a route for fuel passing through the fuel injectors to flow back to the fuel chamber of the vapor separator.

Fuel supply
 Fuel return

006560

Fuel Injectors

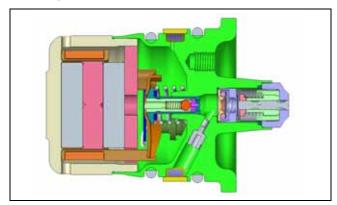
Fuel injectors are fuel metering, electric solenoids (55 V) bolted directly to the cylinder head. The *EMM* controls the activation of each injector by rapidly connecting and disconnecting the injector's internal coil to ground.

Fuel Flow Compensation

The flow rate of each injector is measured as part of the manufacturing process. This information is recorded and assigned to the injector by serial number.

The *EMM* is programmed to compensate for variations in fuel flow. Each injector and its location on the outboard is identified by the *EMM*. DO NOT install an injector without updating the compensation software.

Each service injector includes its fuel flow information on a 3.5 in. floppy disk. This software allows the *EMM* to be reprogrammed for this injector's unique fuel flow characteristics.


NOTICE Fuel injectors MUST NOT be moved from one cylinder to another. EMM programming is associated with the cylinder location of each injector. Installing an injector on the wrong cylinder can result in powerhead failure.

Injector Fuel Supply

Fuel is supplied to the injectors by the fuel circulation pump and the fuel supply manifold.

Each injector has internal fuel passages. These passages are designed to:

- Provide fuel to the injector's injection chamber
- Route fuel through the injector housing to cool the injector coil and armature

006619

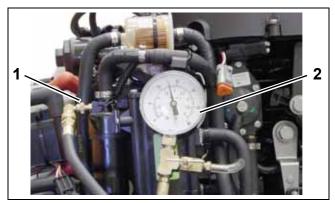
FUEL SYSTEM TESTS

A

WARNING

Use caution when working on any pressurized fuel system. Wear safety glasses and work in a well ventilated area. Extinguish all smoking materials and make certain no open flames or ignition sources exist. Before starting any fuel system service, carefully relieve fuel system pressure. Failure to properly relieve fuel system pressure can result in spraying fuel and/or excessive fuel spillage during servicing. Fuel is flammable and can be explosive under certain conditions.

Fuel System Pressure Test


Relieve fuel system pressure. Refer to **Relieving Fuel System Pressure** on p. 183.

Λ

WARNING

Protect against hazardous fuel spray. Before starting any fuel system service, carefully relieve fuel system pressure.

After relieving fuel system pressure, install a 0 to 60 psi (0 to 415 kPa) Fuel Pressure Gauge, P/N 5007100 or equivalent, to the upper fuel pressure test fitting.

- 1. Test fitting
- 2. Fuel pressure gauge

006655

START outboard and check pressure. System pressure should be 20 to 35 psi (138 to 241 kPa).

Shut OFF outboard. Monitor pressure gauge. Pressure should not drop below 15 psi (103 kPa).

IMPORTANT: If outboard does not run, prime fuel system and crank outboard; check circulation pump operation; check fuel system pressure.

Results:

Normal pressure:

- Observe pressure reading after outboard is shut OFF
- Refer to Lift Pump Pressure Test on p. 180

Pressure drops after outboard is shut OFF:

- · Check for leaking fuel injector.
- Check for leaking pressure regulator.
- · Check for external fuel system leak.

High pressure:

 Check for restricted filter or fuel return fitting of vapor separator, damaged pressure regulator in vapor separator, or restricted fuel return manifold.

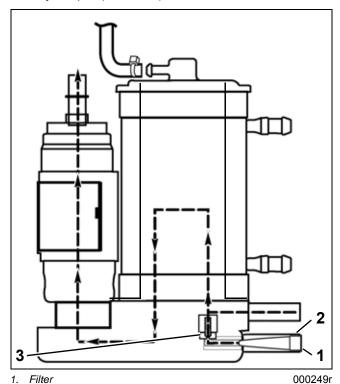
Low pressure:

- Check fuel supply to fuel lift pump. Refer to Lift Pump Vacuum Test on p. 181. Higher vacuum readings indicate restrictions in the fuel supply. Repair or replace as needed.
- Restricted fuel filter/water separator assembly.
- Lift pump not supplying enough fuel to vapor separator. Refer to Lift Pump Pressure Test on p. 180.
- If the above tests are good and vapor separator remains full of fuel, check for damaged circulation pump. Replace vapor separator assembly.

No pressure:

- Check electrical circuit and ground connections for circulation pump.
- If voltage is present and pump does not run, repair connection or replace vapor separator assembly.

Relieve fuel system pressure before removing fuel pressure gauge. Refer to **Relieving Fuel System Pressure** on p. 183.


Pressure Regulator Test

Refer to Vapor Separator Service on p. 185 to remove vapor separator.

Make sure filter is not clogged. Clean or replace as needed.

Apply oil to valve and connect pressure pump and hose to the fuel return fitting of vapor separator.

Apply pressure to check regulator operation. The pressure should open check valve at approximately 15 psi (103 kPa).

- 2. Fuel return fitting
- Pressure regulator

Vapor Separator Vent Check

Monitor the vapor separator vent hose. No fuel or a trace of fuel is acceptable. Excessive fuel discharge indicates a vapor separator vent malfunction. Monitor vent for presence of fuel during testing. Temporarily install clear tubing for monitoring. Replace vapor separator if the venting of fuel is continuous.

Fuel Injector Pressure Test

This test requires Injector Test Fitting kit, P/N 5005844.

Disconnect the battery cables at the battery.

Loosen oil tank assembly to provide access to fuel manifolds. Refer to **Oil Tank Assembly** on p. 207.

Relieve fuel system pressure. Refer to Relieving Fuel System Pressure on p. 183.

WARNING

Protect against hazardous fuel spray. Before starting any fuel system service, carefully relieve fuel system pressure.

IMPORTANT: Perform test with injector mounted to cylinder head and fittings installed with manifold retainer.

Use cap and tie strap to seal off outlet fitting. Connect a 0 to 30 psi (0 to 207 kPa) pressure tester to the inlet fitting. Pressurize the injector to 30 psi (207 kPa). Pressure must hold for at least five minutes.

- 1. Outlet fitting
- 2. Inlet fitting

Refer to FUEL DELIVERY TESTS on p. 128 for additional test procedures.160


Fuel Injector Resistance Test

Disconnect the battery cables at the battery.

Use a digital multimeter to measure the injector coil resistance.

Fuel Injector Coil Resistance

2 to 3 Ω @ 72°F (22°C)

006620

Use a digital multimeter with appropriate adapter leads to measure resistance of the complete injector circuit, including injector and associated wiring.

Measure resistance between pin 1 (white/red) of injector connector (connected) and the appropriate pin location of *EMM* J1-B connector (disconnected). Refer to engine wiring diagram for specific *EMM* J1-B connector pin location for the injector circuit being tested (blue, purple or green).

006621

Resistance should be the same as, or slightly higher than, the injector alone.

Circulation Pump Resistance Test

Disconnect the battery cables at the battery.

Use a digital multimeter with appropriate adapter leads to measure the fuel pump circuit and coil resistance.

Fuel Pump Resistance

3 Ω @ 77°F (25°C)

006633

Lift Pump Pressure Test

Install a 0 to 15 psi (0 to 103 kPa) Fuel Pressure Gauge, P/N 5006397 or equivalent, to the lower fuel pressure test fitting.

1. Fuel pressure gauge

006634

2. Test fitting

Prime the fuel system and check for leaks. START outboard and run at idle speed. Hold gauge level with inlet fitting and monitor gauge for pressure reading.

Pressure should stabilize at a reading greater than 3 psi (27 kPa).

Results:

Normal pressure:

 Perform the Lift Pump Vacuum Test on p. 181. Make sure no air leaks or restrictions exist in the fuel supply hose or boat fuel system.

Low pressure:

- · Check pulse hoses and fittings for restrictions.
- Perform the Lift Pump Vacuum Test on p. 181. Make sure no air leaks or restrictions exist in the fuel supply hose or boat fuel system.
- Check fuel flow through fuel lift pump. Use fuel primer bulb to force fuel through pump.

No pressure:

- Check pulse hoses and fittings restrictions.
- Check fuel flow through fuel lift pump. Use fuel primer or primer bulb to force fuel through pump.
- Momentarily prime or squeeze primer bulb to check gauge operation.
- Check pulse hose and fittings for restrictions.

Lift Pump Vacuum Test

Confirm fuel supply to the fuel lift pump.

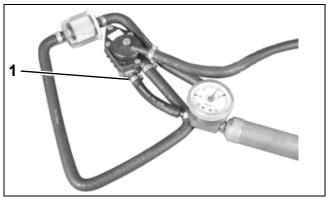
Temporarily install a vacuum gauge, T-fitting, and 8 in. (20.3 cm) of clear vinyl hose between the fuel supply hose and fuel lift pump (inlet). Secure connections with tie straps to prevent fuel or air leaks.

NOTICE Do not use fuel primer bulb, manual fuel primer, or electric fuel pump primer to restart outboard. A positive pressure in the fuel supply could damage some vacuum gauges.

000243

START outboard and run at FULL THROTTLE for at least two minutes. Monitor clear vinyl hose for the presence of air. Air bubbles indicate a faulty hose, connection, or fuel tank pick-up. Repair, if necessary, before proceeding.

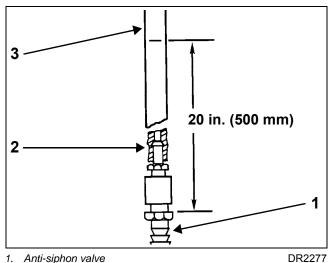
There should be no air or vapor bubbles visible in the clear hose. The maximum inlet fuel vacuum should not exceed 4 in. Hg. (13.5 kPa) at the inlet to the fuel lift pump under any operating conditions (IDLE to WOT).


A higher vacuum indicates an excessive restriction in the fuel supply. Repair as needed. Refer to **Fuel System Requirements** on p. 37 for fuel supply component requirements.

Lift Pump Diaphragm Test

Perform this test only if a damaged pump is suspected. This test does not confirm the performance of internal fuel pump check valves.

Remove the pulse hose from the crankcase fitting.


Apply 15 psi (103 kPa) to the pulse hose of the pump. Replace lift pump if pump fails to hold pressure.

002334a Pulse fitting

Anti-Siphon Valve Test

Remove anti-siphon valve from fuel tank. Install adapter fittings and a 36 in. (91.4 cm) length of clear hose to the inlet side (tank end) of valve.

Anti-siphon valve

Adapter fitting

3. Clear hose

Fill clear hose with water to a height of 20 in. (500 mm). Water must NOT flow through valve. An occasional drip is acceptable. Replace valve if water drips continuously.

Increase height of water to 25 in. (630 mm). Water should flow through valve as water level reaches 25 in. (630 mm). Replace the anti-siphon valve if test results are different.

FUEL COMPONENT SERVICING

▲ WARNING

Gasoline is extremely flammable and highly explosive under certain conditions. Use caution when working on any part of the fuel system.

Protect against hazardous fuel spray. Before starting any fuel system service, carefully relieve fuel system pressure. Refer to Relieving Fuel System Pressure.

Always disconnect the battery cables at the battery before servicing the fuel system unless instructed to do otherwise.

Always work in a well ventilated area and wipe off any fuel spillage.

DO NOT smoke and make certain no open flames or ignition sources exist.

After servicing the fuel system check for leaks. Failure to check for fuel leakage could allow a leak to go undetected, resulting in fire or explosion.

Relieving Fuel System Pressure

IMPORTANT: Minimize fuel system pressure before disassembly. Temporarily restrict the fuel supply hose from fuel tank with hose pincer. Remove propeller and disconnect circulation fuel pump electrical connector. If outboard runs, start and run at IDLE for 5 seconds and STOP outboard. If outboard does NOT run, crank for 10 seconds.

Disconnect the battery cables at the battery.

Wrap a shop towel completely around the pressure test valve while connecting fitting from Fuel Pressure Gauge, P/N 5007100, to top test fitting of fuel pump/vapor separator assembly.

1. Shop towel

005011

Insert venting hose of gauge into a suitable container.

Slowly open gauge's venting valve.

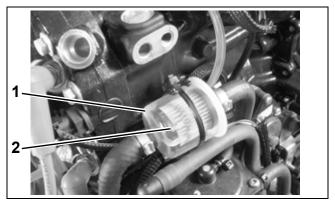
Clean up any spilled fuel with shop towels.

. Test fittina

- Venting valve
- 3. Venting hose

FUEL SYSTEM

FUEL COMPONENT SERVICING


Fuel Filter Service

Removal

Disconnect the battery cables at the battery.

Remove filter carefully to prevent spilling contents.

Inspect contents for any presence of water. If water is present, identify the source and correct the problem. Take additional fuel samples and drain fuel tank(s) if necessary.

Fuel filter
 Arrow

002192

Installation

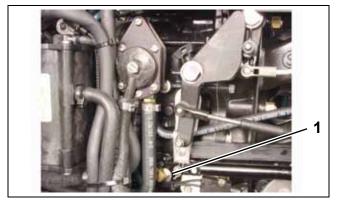
Install filter in fuel supply hoses. Note arrow indicating direction of fuel flow on filter. Secure filter with appropriate clamps. Refer to **Oetiker Clamp Servicing** on p. 42.

Squeeze primer bulb to prime fuel system. Hold pressure on bulb and check for fuel leaks.

Connect battery cables.

Run outboard and check for fuel leaks.

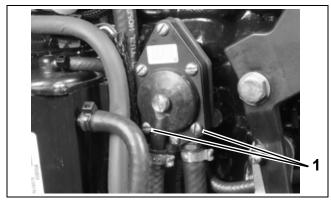
Fuel Lift Pump Service


The fuel lift pump is serviceable as a complete assembly or can be repaired with a fuel pump repair kit. Refer to parts catalog for service parts.

Removal

Disconnect the battery cables at the battery.

Disconnect the fuel hoses from the fuel pump housing.


Disconnect the fuel lift pump pulse hose at the crankcase fitting.

1. Crankcase fitting

006558

Loosen the fuel lift pump mounting screws. Remove the fuel lift pump as an assembly.

1. Screws

002194

Fuel pump repair kit, P/N 438616, is available for internal service of fuel pump. Refer to instructions included with kit.

Installation

Place fuel pump in position on crankcase. Apply *Nut Lock* to mounting screws. Tighten screws to a torque of 24 to 36 in. lbs. (2.8 to 4.0 N·m).

Connect the fuel lift pump pulse hose to the crankcase. Secure with tie strap.

Connect the fuel hoses to the fuel filter. Secure with *Oetiker* clamps.

Squeeze primer bulb to prime fuel system. Hold pressure on bulb and check for fuel leaks.

Connect battery cables.

Run outboard and check for fuel leaks.

Vapor Separator Service

Removal

Disconnect the battery cables at the battery.

Relieve fuel system pressure. Refer to **Relieving Fuel System Pressure** on p. 183.

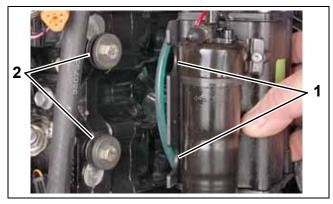
Disconnect circulation pump electrical connector.

Remove clamp and fuel supply manifold from top of circulation pump. Remove clamp and vapor vent hose from separator cover.

Remove clamps and vapor separator cooling water hoses.

Remove clamps and fuel return manifold and fuel supply hose from bottom of vapor separator.

Remove the vapor separator housing retainer clip.



1. Retainer clip 005013

Remove vapor separator/fuel pump from the mounting stud and slide vapor separator housing from the grooves of the isolator mounts.

Installation

Slide the vapor separator bracket notches into grooves of the isolator mounts. Install forward isolator of vapor separator on mounting stud and secure with retainer clip.

Notches
 Isolator mounts

007859

Install all hoses and manifolds in original locations and secure with appropriate clamps. Refer to **Oetiker Clamp Servicing** on p. 42. Route hoses and secure with tie straps as shown.

007860

Squeeze primer bulb to prime fuel system. Hold pressure on bulb and observe for fuel leaks.

Connect battery cables.

Run outboard and check for fuel leaks.

FUEL SYSTEM

FUEL COMPONENT SERVICING

Fuel Manifold Service

Removal

Disconnect the battery cables at the battery.

Relieve fuel system pressure. Refer to Relieving Fuel System Pressure on p. 183.

Remove oil tank assembly. Refer to Oil Tank Assembly on p. 207.

Remove clamps and disconnect the fuel manifolds as follows:

- Fuel supply manifold to circulation pump.
- Fuel return manifold to vapor separator.

Fuel supply manifold Fuel return manifold

Remove fuel manifold retainer screws and remove retainers from fuel injectors.

Screw

006559

Disconnect fuel manifold fittings from fuel injector ports, then remove the manifold assemblies.

Installation

Check condition of sealing O-rings on fuel manifold fittings. Lubricate O-rings with outboard lubricant and insert fuel manifold fittings into injector. Both fittings must be fully seated into the injector fuel ports.

Install retainer in the outer groove of the manifold fittings. Install and tighten screw to a torque of 24 to 36 in. lbs. (2.7 to 4 N·m).

- Retainer
- 2. Manifold fitting groove

005342

Install the fuel manifolds to the fuel pump assembly and secure with clamps:

- · Fuel supply manifold to circulation pump.
- Fuel return manifold to vapor separator.

Install oil tank assembly. Refer to Oil Tank Assembly on p. 207.

Fuel Injector Service

Mark fuel injectors to show cylinder locations.

NOTICE Fuel injectors must be installed in the correct cylinder locations. Use *Evinrude Diagnostics* Software to make sure that *EMM* programming matches injector positioning. The *Injector Coefficients* screen displays injector serial numbers.

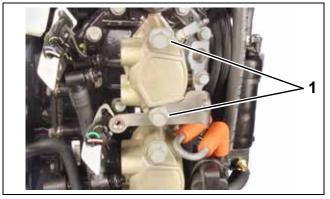
Injector Coefficients Screen

008079

Use caution when handling fuel injectors. Prevent dirt and debris from entering fuel inlet and outlet ports of injectors or fuel manifolds. Cover the injector nozzle port in cylinder head to prevent contamination of combustion chamber.

Removal

Disconnect the battery cables at the battery.


Relieve fuel system pressure. Refer to **Relieving Fuel System Pressure** on p. 183.

Remove fuel manifolds. Refer to **Fuel Manifold Service** on p. 186.

Remove the ignition coil assemblies.

Disconnect the fuel injector electrical connector.

Remove injector screws.

1. Injector screws

006561

Remove fuel injector and insulator.

Crush Ring Replacement

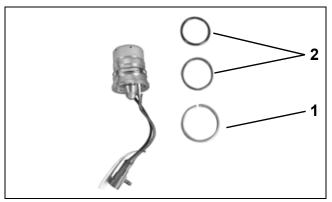
NOTICE Injector crush rings must be replaced if injector is installed in a different head or cylinder location.

Use Slide Hammer assembly, P/N 391008, with Slide Hammer Adaptor kit, P/N 390898, to remove injector from mounting cup.

Thread adaptor and stud into face of injector. Hold mounting cup securely. Use slide hammer to separate injector from mount housing.

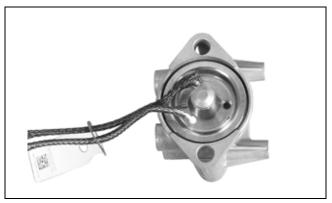
002345

Remove adaptor from injector. Remove crush ring and O-rings from injector. Inspect and clean injec-


FUEL SYSTEM

FUEL COMPONENT SERVICING

tor filter. Install new crush ring and O-rings. Lubricate O-rings with STP[†] Oil Treatment.


1. Adaptor 002196

- 1. Crush ring
- 2. O-rings

002317

Install injector into mount housing. Press on injector face until injector seats in mount housing.

002318

Installation

NOTICE All injectors must be installed in the correct cylinder by serial number. Improper injector installation can result in powerhead failure.

Installation of replacement injectors requires the use of diagnostics software and fuel flow data supplied with all replacement injectors on 3.5 in. floppy disk.

008101

The following items and their mating surfaces must be cleaned prior to reassembly:

- Injector
- Cylinder head
- Adapter
- Screws
- Threaded areas.

A

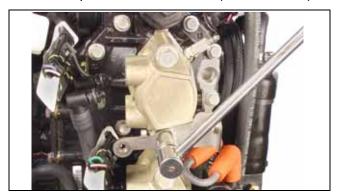
CAUTION

All injector components must be clean to ensure correct torque tightening specifications. To prevent fuel leakage, carefully follow these installation instructions.

Place injector and insulator in the proper cylinder location.

IMPORTANT: Be careful not to pinch any wiring or hoses during assembly.

Lubricate mounting screw threads and under the head of the screw with a light coat of *Triple-Guard*


grease. Install washers (one per screw) on injector retaining screws. Install screws and washers through mounting flange of injector and into cylinder head.

002316

Tighten screws in stages, starting with the lower screw.

- First torque is 5 ft. lbs. (7 N·m).
- Second torque is 10 ft. lbs. (14 N·m).
- Final torque is 24 to 26 ft. lbs. (33 to 35 N·m).

Tighten Screws in Stages

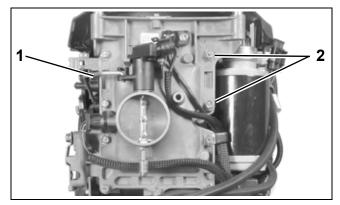
006562

Reconnect fuel injector electrical connectors.

Install the ignition coil assemblies. Tighten coil screws to a torque of 60 to 84 in. lbs (7 to 9.5 $N \cdot m$).

Install fuel manifolds. Refer to **Fuel Manifold Service** on p. 186.

IMPORTANT: Install injector service data (3.5 in. floppy disk) by using the Injector Replacement Utility of *Evinrude Diagnostics* software. Check the *Injector Coefficients* screen to make sure that all injectors are positioned properly.

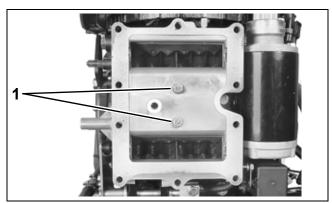

Intake Manifold Service

Removal

Disconnect vapor separator vent hose, main bearing vent hose, air temperature sensor, crankshaft position sensor, and throttle position sensor.

Use Ball Socket Remover Tool, P/N 342226, to remove throttle link arm.

Remove throttle body screws and throttle body assembly.


1. Link arm

2. Throttle body screws

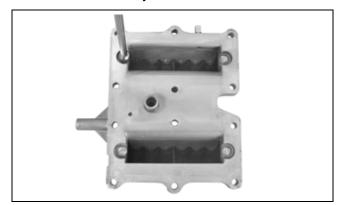
002499

Remove gasket from throttle body.

Remove screws and reed plate assembly from the crankcase.

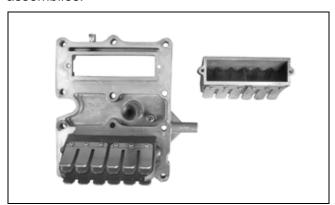
1. Screws

002503


FUEL SYSTEM

FUEL COMPONENT SERVICING

Disassembly

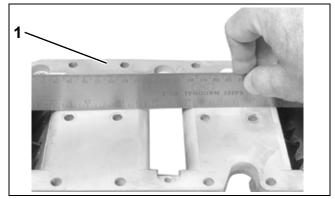

All reed plate assembly and reed valve assemblies must be cleaned prior to reassembly. DO NOT use strong carburetor cleaner or the hot soaking tank method for cleaning.

Remove the reed valve retainer screws and remove the assembly.

002496

Use caution to prevent damaging reed valve assemblies.

002504

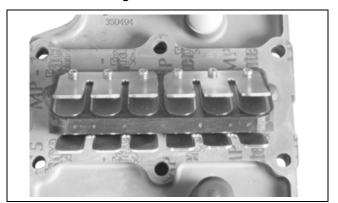

NOTICE DO NOT disassemble reed valve assemblies. Damaged reed plates are not serviceable and are replaced as an assembly.

Inspection

Inspect the leaf plate assemblies for damage or contamination:

- Leaf plates must not be distorted.
- Leaf valve must not be cracked or chipped.
- Leaf plate stops must not be distorted or loose.
- Leaf plate assemblies must be clean.

Inspect the intake manifold. All gasket surfaces must be cleaned, smooth, and free of nicks. Use a machinist's straight-edge and a feeler gauge to check flatness in all directions. Surface must be flat, ±0.004 in. (0.10 mm).


1. Straight-edge

002324

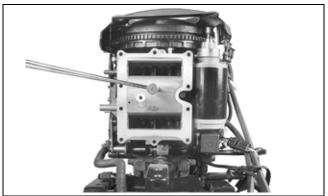
Assembly


Remove old adhesive from reed valve retaining screws.

Install gasket on reed plate assembly. DO NOT use sealer on the gasket.

002333

Prime screw threads with *Locquic Primer* and let dry. Apply *Nut Lock* to threads. Position reed valve on reed plate and install screws. Tighten screws to a torque of 25 to 35 in. lbs. $(2.8 \text{ to } 4.0 \text{ N} \cdot \text{m})$.



002326

Installation

Place reed plate assembly on cylinder/crankcase.

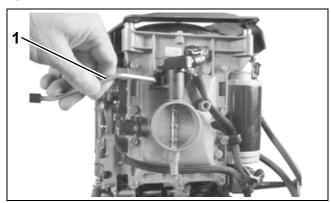
Apply *Nut Lock* to two reed plate screws. Install and tighten screws to a torque of 60 to 120 in. lbs. (7 to 13.5 N·m).

002505

Place gasket on throttle body. Install throttle body on reed plate and install **new** screws.

IMPORTANT: If old screws must be re-used, make sure all previous thread locking material is removed and apply *Nut Lock* to threads.

Tighten the center screws first and expand outward. Tighten in stages to a final torque of 60 to 120 in. lbs. (7 to 13.5 N·m).


002501

Install vapor separator vent hose and main bearing vent hose. Secure with tie straps.

Install air temperature sensor, crankshaft position sensor, and throttle position sensor electrical connectors.

Connect throttle linkage.

IMPORTANT: DO NOT lubricate throttle linkages.

1. Throttle linkage

002500

Refer to **TPS Calibration** on p. 158.

NOTES

Technician's Notes	Related Documents Bulletins				
	Instruction Sheets				
	041				
	Other				

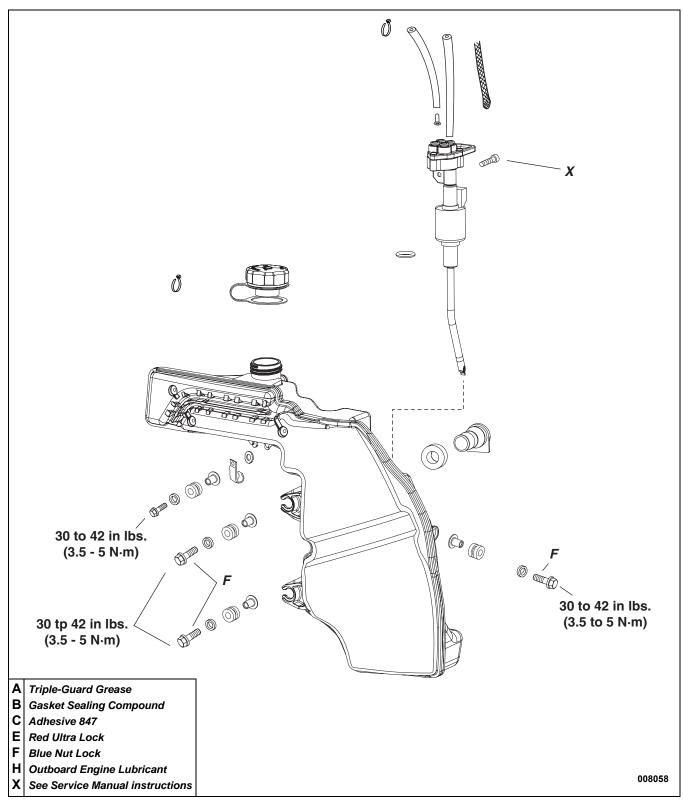
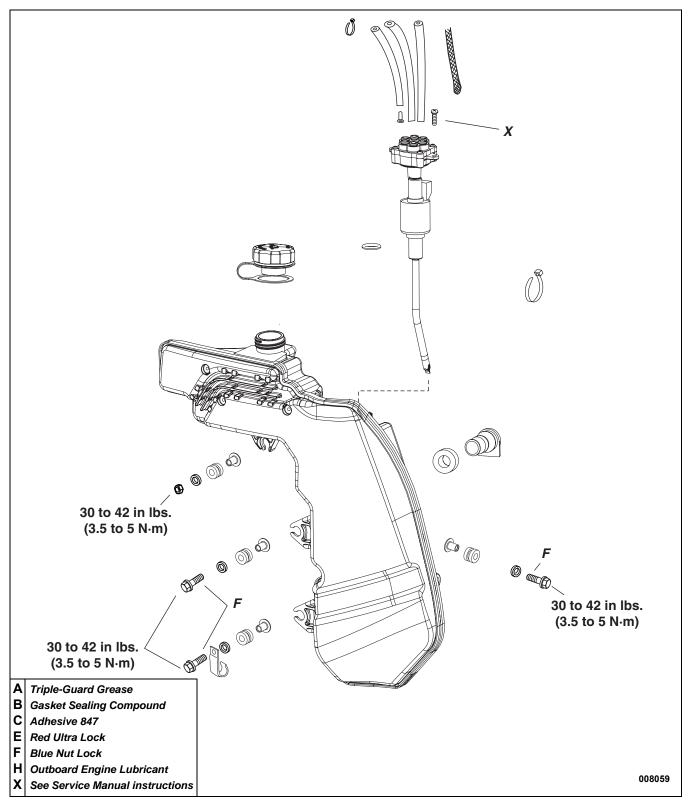
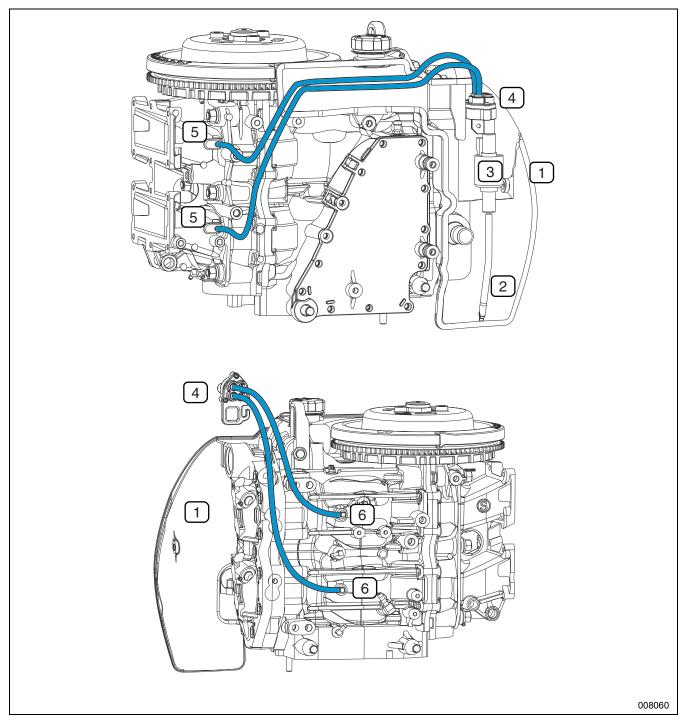

OILING SYSTEM

TABLE OF CONTENTS

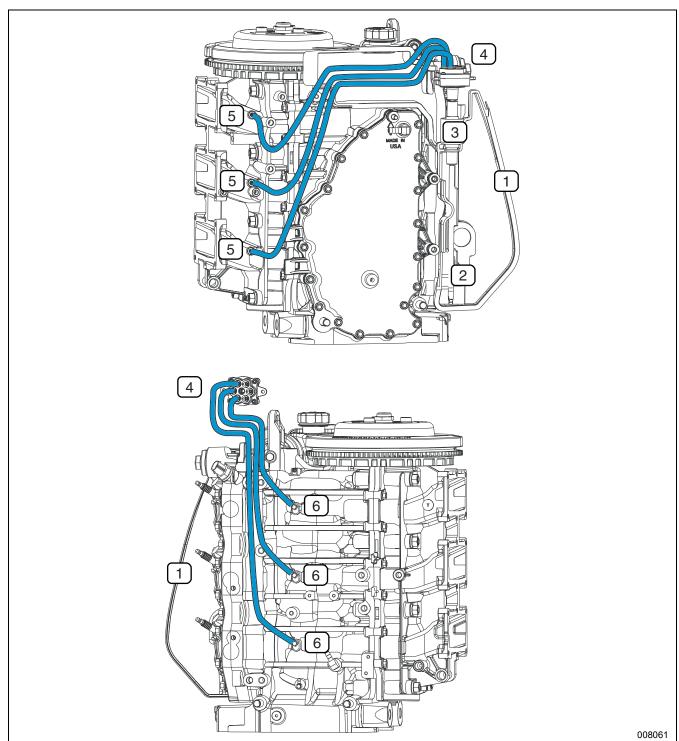

SERVICE CHART	. 194
OIL SUPPLY DIAGRAMS	
OIL RECIRCULATION DIAGRAMS	. 198
OILING SYSTEM CIRCUIT DIAGRAM	. 199
COMPONENTS	. 200
OIL TANK ASSEMBLY	. 200
OIL INJECTION PUMP	
ELECTRICAL CIRCUIT (55 V)	
LOW OIL WARNING	
NO OIL WARNING	-
CYLINDER AND CRANKCASE	
OIL RECIRCULATION SYSTEM	-
OIL CONTROL SETTINGS	
OIL PRIMING	
OILING RATES	
BREAK-IN OILING	
OILING SYSTEM TESTS	
OIL INJECTION PUMP STATIC TEST	
OIL INJECTION PUMP VOLTAGE TEST	
OIL INJECTION PUMP CIRCUIT RESISTANCE TEST	
OIL INJECTION PUMP FUNCTION TEST	
OIL INJECTION FITTINGS FLOW TEST	
LOW OIL SENDING UNIT TEST	
OIL COMPONENT SERVICING	
OIL DISTRIBUTION HOSES	
OIL TANK ASSEMBLY	
OIL INJECTION PUMP	. 209

SERVICE CHART

40 - 65 HP

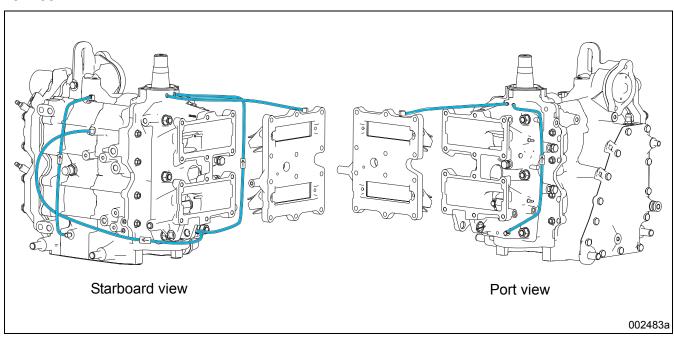


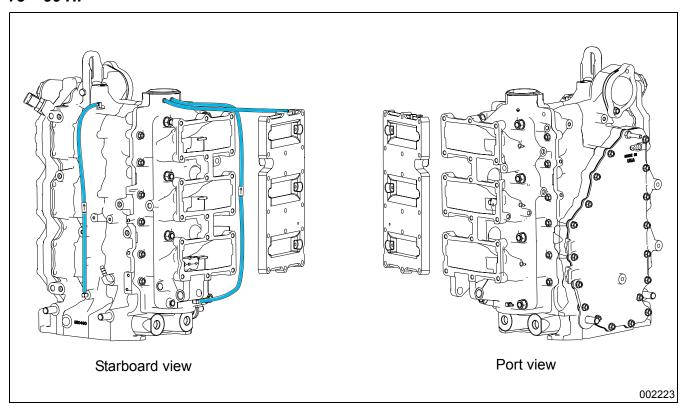
75 - 90 HP


OIL SUPPLY DIAGRAMS

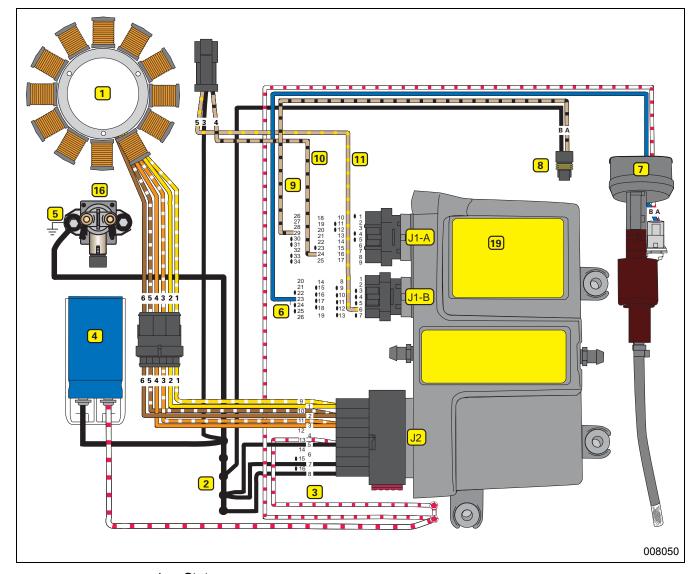
40 - 65 HP

- 1. Oil tank
- 2. Oil pick-up/filter
- 3. Oil injection pump
- 4. Oil distribution manifold
- 5. Crankcase oil inlet (port)
- 6. Cylinder oil inlet (starboard)


75 - 90 HP


- 1. Oil tank
- 2. Oil pick-up/filter
- 3. Oil injection pump
- 4. Oil distribution manifold
- 5. Crankcase oil inlet (port)
- 6. Cylinder oil inlet (starboard)

OIL RECIRCULATION DIAGRAMS


40 - 65 HP

75 – 90 HP

OILING SYSTEM CIRCUIT DIAGRAM

- 1. Stator
- 2. Stator output (55 V)
- 3. Alternator grounds (BLACK)
- 4. Oil Injector ground (BLACK)
- 5. Alternator output, WHITE / RED wires (55 V)
- 6. Capacitor (55 V)
- 7. Main harness ground (BLACK)
- 8. 55 V to injection pump (WHITE / RED)
- 9. *EMM* injector control (BLUE)
- 10. Oil injection pump
- 11. Low oil switch
- 12 Low oil switch to *EMM* (TAN/BLACK)
- 13. Low oil signal to SystemCheck gauge (TAN/BLACK)
- 14. No oil signal to SystemCheck gauge (TAN/YELLOW)

OILING SYSTEM COMPONENTS

COMPONENTS

The oiling system includes the following components:

- Oil tank
- Oil injection pump and manifold assembly
- Oil level switch
- Electrical circuit
- LOW OIL and NO OIL warning systems
- Cylinder and crankcase
- · Oil recirculation system.

Oil Tank Assembly

The oil tank is mounted on the powerhead under the engine cover. Oil level must be monitored.

3-CYLINDER MODELS

Oil Tank Components:

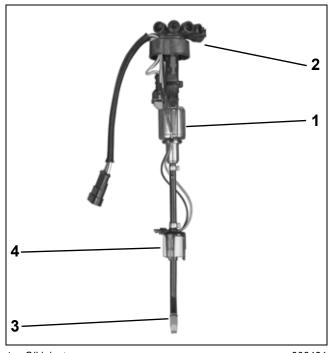
- Tank, 2.4 quart. (2.3 liter) capacity
- Oil pickup and filter assembly
- · Oil injection pump and manifold assembly
- LOW OIL switch
- · Oil distribution hoses

008062

2-CYLINDER MODELS

Oil Tank Components:

- Tank, 2 quart. (1.87 liter) capacity
- Oil pickup and filter assembly
- · Oil injection pump and manifold assembly
- LOW OIL switch
- Oil distribution hoses

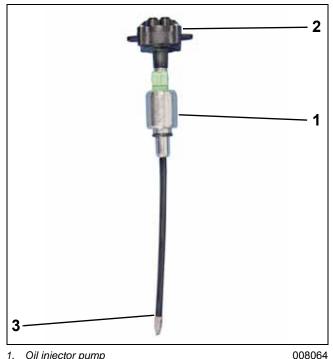

008063

Oil Injection Pump

The oil injection pump is an electric (55 V) actuator style pump. It draws oil from the oil tank and supplies pressurized oil to the oil manifold. The *EMM* supplies 55 V and controls activation of the pump.

The oil manifold distributes the oil supplied by the pump.

D, E, R-SUFFIX MODELS



1. Oil injector pump

- Oil distribution manifold
- 3. Pickup tube and filter
- 4. Low oil sending unit

006481

F-SUFFIX MODELS

Oil injector pump

- 2. Oil distribution manifold
- 3. Pickup tube and filter

Electrical Circuit (55 V)

The oil injector is powered by the 55 V electrical circuit. The EMM controls pump operation by rapidly connecting and disconnecting the pump's internal coil to ground.

The EMM monitors the oil injection pump electrical circuit. If circuit voltage is beyond the specified range, or the circuit is open, the EMM:

Activates S.A.F.E.
Stores a service code 34
EMM LED 4: ON (Running)
Engine Monitor NO OIL display: ON

LOW OIL Warning

A switch in the oil tank assembly monitors the oil level in the oil tank.

If the oil level falls below one-quarter capacity, the EMM signals:

Engine Monitor LOW OIL display: ON

Approximate oil reserve at Low Oil activation:

0.45 qt. (0.43 l).

NO OIL Warning

When the oil level falls below one-quarter, the EMM begins counting oil pump pulse cycles. When it reaches:

• **40 – 65 HP**: 4800 pulses • 75 - 90 HP: 6000 pulses

the EMM:

Activates S.A.F.E.
Stores service code 117
EMM LED 4: ON (Running)
Engine Monitor NO OIL display: ON

To recover from S.A.F.E. mode:

- Oil level must be above one-quarter
- The warning resets after three oil pump pulse cycles when the outboard has been stopped and restarted.

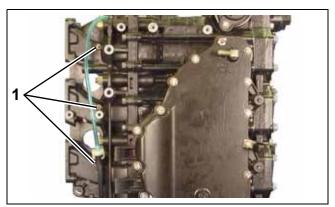
OILING SYSTEM

COMPONENTS

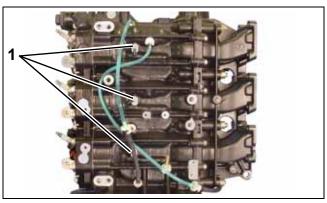
If outboard has been run for more than 3 hours with NO OIL faults (codes 34 & 117), the *EMM*

Activates SH	UΙ	DC	177(V
--------------	----	----	------	---

Stores service code 33


EMM LED 4: FLASHING

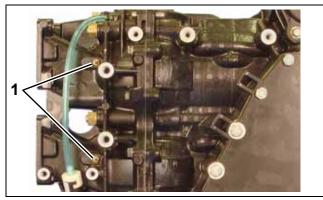
Engine Monitor NO OIL display: FLASHING


Cylinder and Crankcase

The oil distribution manifold provides crankcase lubrication through oil distribution hoses and pressed-in fittings on the crankcase and cylinder block.

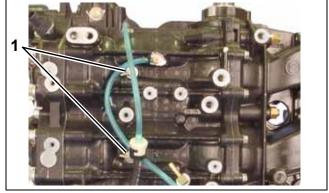
3-CYLINDER MODELS

1. Crankcase oil fittings



1. Cylinder block oil fittings

006759


006758

2-CYLINDER MODELS

1. Crankcase oil fittings

1. Cylinder block oil fittings

006615

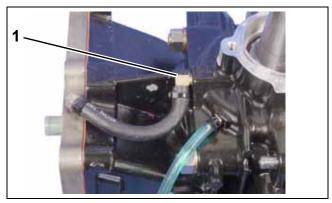
Oil Recirculation System

External hoses and fittings, internal cylinder/crankcase passages, and intake manifold passages are used to recirculate any accumulation of oil from various locations in the powerhead. The movement of oil is controlled by check valves.

Cylinder Recirculation

Internal powerhead oil drain passages connect the intake port areas of the cylinders to circulate residual oil in the block.

External fittings and in-line check valves on each side of the cylinder block control the movement of oil from the lower cylinder port to the upper cylinder port.


9

Crankcase / Main Bearing Recirculation

The movement of oil through the main bearings is controlled by internal passages, external fittings and hoses, and check valves.

Lower to upper main bearing oil flow:

- Lower main bearing cavity to internal crankcase passage to external fitting, external hoses with in-line check valve to external fitting at upper main bearing, and into upper main bearing through internal crankcase passage.
- Internal crankcase passage to external fitting in crankcase cover at upper main bearing, hose routed to reed plate fitting. This circuit vents the upper main bearing cavity to promote oil flow.

1. Upper main bearing vent

002399

Refer to the **OIL RECIRCULATION DIAGRAMS** on p. 198.

OIL CONTROL SETTINGS

Oil Priming

The oiling system of the outboard must be primed:

- · When the outboard is first installed.
- Whenever the oil supply to the oil lift pump is disconnected or disrupted.
- Whenever an oiling system component is removed or replaced.

Refer to Oil Supply Priming on p. 65.

Oiling Rates

EMM programming controls the rate of oil injection based on engine RPM. This rate can be adjusted for the grade of oil being used, and also for powerhead break-in. Use *Evinrude Diagnostics* software to access these features.

Refer to Oil Injection Rate on p. 64.

Break-in Oiling

The *EMM* automatically supplies extra oil to the engine during the first two hours of operation, above 2000 RPM.

- Use *Evinrude Diagnostics* software to make sure the break-in program has been started on a new outboard.
- Use the diagnostics software to start break-in oiling after a powerhead rebuild.

1. Break-in oil setting

008084

IMPORTANT: The operator must monitor the oil tank level to confirm oil consumption. This may require several hours of operation above idle.

OILING SYSTEM TESTS

IMPORTANT: Always perform visual inspections to identify oiling system leaks. Make sure the oil tank is filled and oil supply is not contaminated.

Oil Injection Pump Static Test

IMPORTANT: Do NOT perform static tests using Diagnostic Power Supply Tool, P/N 587005, with internal 9 volt batteries only. This will produce false results. Refer to **Communication** on p. 109.

Use *Evinrude Diagnostics* software to activate the *Oil Injector* test. This test starts the *EMM* control function for the oil injection pump.

The *EMM* controls the pump by providing ground through pin 23 (blue wire) of the J1-B connector and pin B (blue wire) of the oil tank connector.

Static Tests Screen
1. Oil injector test button

008082A

IMPORTANT: This test is operating the pump with 12 V battery power on the system voltage (55 V) circuit. The oil injection pump will not activate on 12 V.

Use an inductive timing light to monitor current flow through the ground circuit (blue wire) at the oil tank connector (pin 2).

If the light flashes, the *EMM* and oil injection circuits are not at fault.

Refer to **Oil Injection Pump Voltage Test** on p. 204.

Oil Injection Pump Voltage Test

Use a digital multimeter with appropriate adapter leads to check voltage at pin A (white/red wire) of oil tank electrical connector.

Acceptable voltage readings:

- Key switch ON: slightly less than 12 V
- Outboard running: 55 V

Results:

- If voltage is not within range, refer to Oil Injection Pump Circuit Resistance Test on p. 205.
- No voltage reading, refer to System Voltage Test on p. 124.

Monitor the voltage on the oil injector circuit at pin B (blue wire) of oil tank connector, or pin 23 (blue wire) of the *EMM* J1-B connector, with outboard running at 1500 RPM.

Use an appropriate test probe and a digital multimeter calibrated to a scale that reads 55 V (DC). Connect positive meter lead to pin B and negative meter lead to ground.

1. Oil injection pump connector (pin 2)

008065

Voltage reading should be approximately 55 V, and drop approximately 5 V as *EMM* actuates oil injection pump.

Q

Oil Injection Pump Circuit Resistance Test

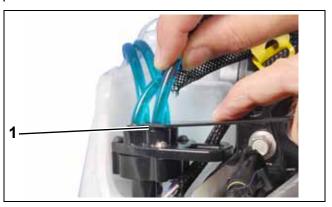
IMPORTANT: The complete oil injection pump electrical circuit includes *EMM* alternator output, the engine wire harness, the injection pump winding and connectors, and the oil injector control circuit of the *EMM*. Check continuity of all wiring and connections.

Disconnect the battery cables at the battery.

Use a digital multimeter with appropriate adapter leads to measure the resistance between pin 23 (blue) of the *EMM* J1-B connector and pin A (white/red) of the oil injection pump connector. Calibrate the meter to the LOW OHMS scale.

Oil Injection Pump Circuit Resistance 22Ω

1. EMM J1B connector (pin 23)


008066

Results:

- An infinite reading (∞) indicates an open circuit. Isolate the faulty wiring, connection, or injection pump winding. Repair faulty wiring or replace faulty pump.
- For a higher than expected reading, test resistance of the injection pump. If injection pump resistance reading is within range, injection pump winding is good. Isolate faulty component. Repair faulty wiring or replace faulty component and retest.

Oil Injection Pump Function Test

Remove oil distribution hose from fitting at oil distribution manifold. Do not lose the brass hose support.

1. Retainer mechanism

008067

Temporarily install a length of oil hose.

008068

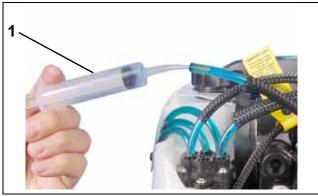
Start the outboard and observe oil flow:

- Oil flows from hose, compare to oil flow at other distribution fittings
- If one or more fittings fail to flow oil, replace the oil injection pump assembly.

Reinstall hose into manifold.

IMPORTANT: Make sure hose support is in hose and hose is fully inserted into manifold. Refer to **Oil Distribution Hoses** on p. 206.

OILING SYSTEM


OIL COMPONENT SERVICING

Oil Injection Fittings Flow Test

Make sure the oil injection fittings of the cylinder and crankcase assembly allow fluid to move.

Remove oil distribution hose from oil distribution manifold.

Use a Syringe, P/N 346936, filled with isopropyl alcohol to force fluid through hose and fitting.

. Syringe 008069

LOW OIL Sending Unit Test

Remove oil from the oil tank.

Turn the key switch ON. The dash mounted Engine Monitor system should show a LOW OIL warning.

Once the warning has been confirmed, refill the oil tank and start the outboard. The LOW OIL warning should stop after the oil pump cycles 3 times.

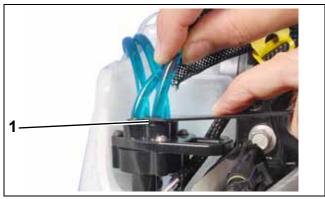
OIL COMPONENT SERVICING

A

WARNING

To prevent accidental starting while servicing, twist and remove spark plug leads.

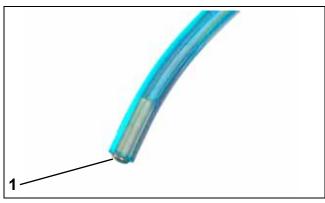
Oil Distribution Hoses


The oil distribution hoses to each cylinder MUST be the same length. DO NOT alter the length of any hoses.

Oil Distribution Hose Length:

• 20 in. (508 mm)

Removal


Release the hose by depressing the outer ring of the hose retaining mechanism.

1. Retainer mechanism

008067

Once hose is removed from the manifold, make sure hose support is in the end of the hose.

1. Hose support

008070

Installation

Cut Replacement Oil Hose, P/N 778708, to the correct length. Insert hose support in manifold end of hose.

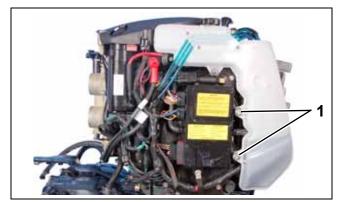
IMPORTANT: DO NOT reinsert the hose into manifold without the hose support.

Be sure the hose is fully inserted into manifold. Insertion depth is 5/8 in. (16 mm). Visually inspect for hose supports.

Oil Tank Assembly

Removal

Disconnect the battery cables at the battery.


Remove engine covers and air silencer.

Remove oil tank retaining screws.

3-CYLINDER MODELS

1. Screw 008071

1. Screws 008072

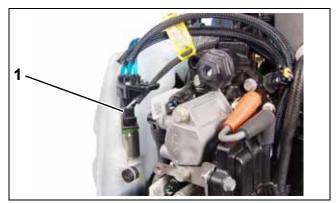
2-CYLINDER MODELS

1. Screw 008073

1. Screws 008074

ALL MODELS

Disconnect the electrical connector to the oil injection pump and manifold assembly.



D, E, R-Suffix Models1. Oil pump connector

007177

OILING SYSTEM

OIL COMPONENT SERVICING

F-Suffix Models
1. Oil pump connector

008075

Disconnect the electrical connector to the low oil switch.

F-Suffix Models
1. Low oil switch connector

008076

IMPORTANT: Note oil distribution hose routings before proceeding with disassembly.

Remove oil distribution hoses from the manifold.

Installation

Position oil tank assembly on powerhead. Clean mounting screws and apply $Nut\ Lock$ to threads. Install screws and tighten to a torque of 30 to 42 in. lbs. (3.5 to 5 N·m).

Install protective sleeves and route oil distribution hoses from the oil distribution manifold to the crankcase oil delivery fittings. Refer to **OIL SUP-PLY DIAGRAMS** on p. 196. Secure oil hoses to crankcase fittings with tie straps.

1. Tie strap 006573

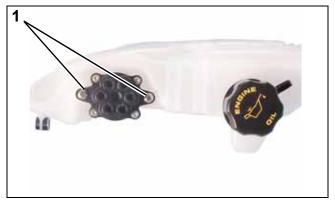
Run outboard and check for leaks. Use *Evinrude Diagnostics* software to activate "Oil Prime." Check oil flow through oil distribution hoses. Check oil system operation and routing of oil system hoses.

Repair any oil leaks and kinked or misrouted hoses. Install air silencer and engine covers.

Oil Injection Pump

Removal

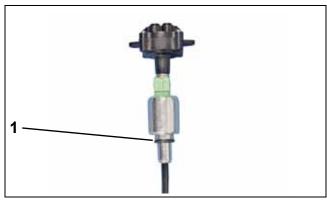
Remove oil distribution hoses from oil manifold. Refer to **Oil Distribution Hoses** on p. 206.


Remove oil from oil tank.

Remove oil tank. Refer to **Oil Tank Assembly** on p. 207. Remove retaining screw(s) from oil pump assembly. Twist and pull up on oil pump to remove from tank. DO NOT pull up on oil manifold.

2-Cylinder Models
1. Screw

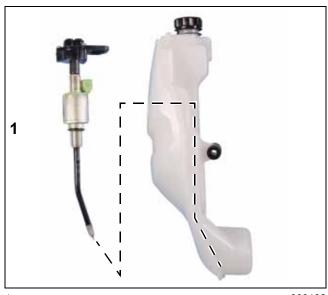
008180



3-Cylinder Models
1. Screws

008181

Installation

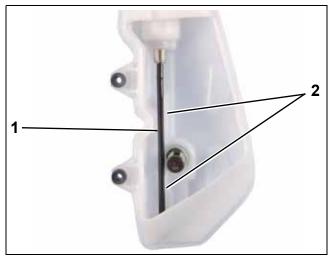

Apply a drop of outboard lubricant to a new oil pump o-ring. Install o-ring on oil pump flange.

1. O-ring 008064

2-CYLINDER MODELS

Install oil pump and manifold so that bend of oil pick up assembly is positioned to follow the contour of the oil tank as shown.

1. 008182


OILING SYSTEM

OIL COMPONENT SERVICING

3-CYLINDER MODELS

Install oil pump and manifold straight into oil tank.

IMPORTANT: Be sure oil pick up assembly is positioned in front of oil tank baffle to prevent interference with the LOW OIL switch.

- Oil pick up assembly
 Oil tank baffle

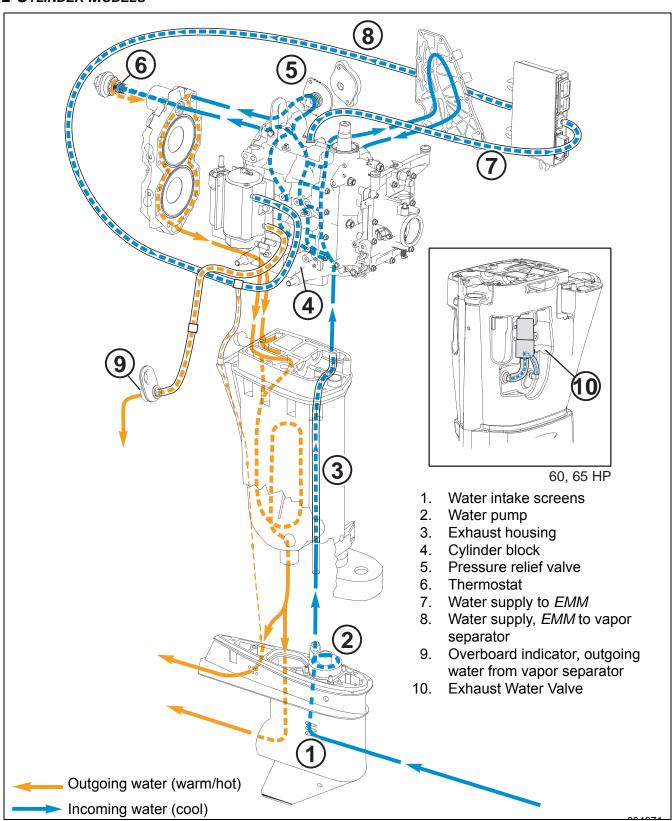
008183

ALL MODELS

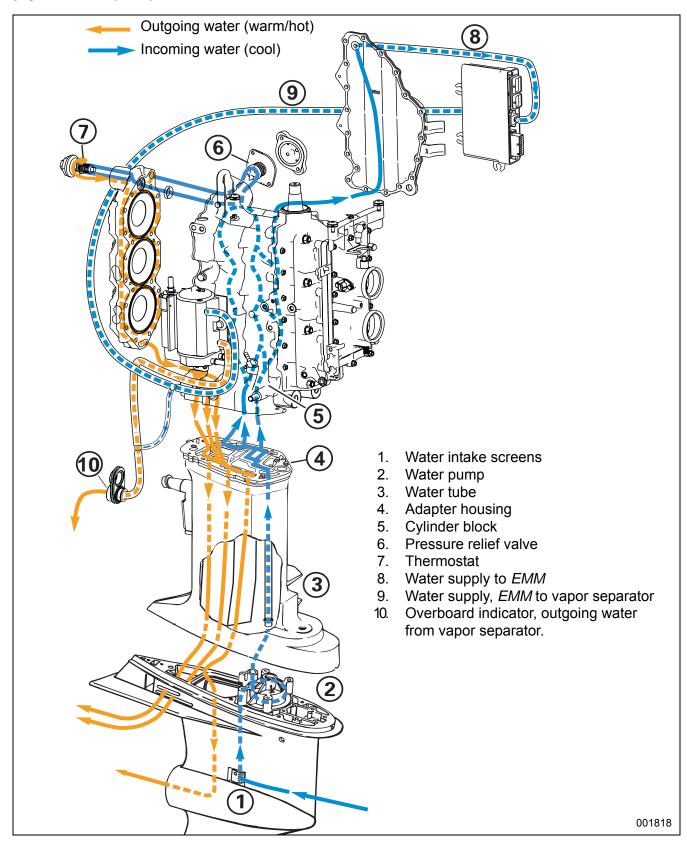
Install oil pump retainer screw(s). Tighten securely.

IMPORTANT: Turn self-tapping screws counter clock-wise to start the threads and clockwise to tighten. Failure to follow this procedure can damage the threads of the oil tank.

COOLING SYSTEM


TABLE OF CONTENTS

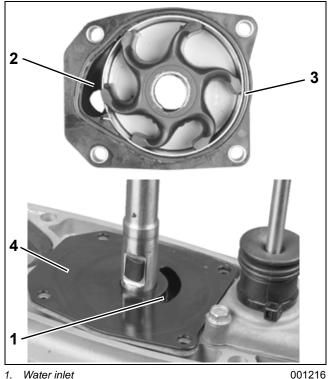
HOSE ROUTING AND WATER FLOW DIAGRAMS	212
COMPONENTS	214
WATER PUMP AND INTAKES	214
EXHAUST HOUSING	214
WATER SUPPLY TUBE	
ADAPTER/INNER EXHAUST HOUSING	215
PRESSURE RELIEF VALVE	215
THERMOSTAT	215
BLOCK VENTING	216
WATER PRESSURE CONNECTION	216
OPERATION	
CYLINDER BLOCK / CYLINDER HEAD COOLING	217
EMM AND VAPOR SEPARATOR COOLING	217
ENGINE TEMPERATURE CHECK	218
SOFTWARE METHOD	218
PYROMETER METHOD	218
IDLE OPERATING TEMPERATURE TROUBLESHOOTING (BELOW RANGE)	219
TEMPERATURE SENDER SERVICING	220
REMOVAL	220
INSTALLATION	220
THERMOSTAT SERVICING	220
DISASSEMBLY	220
INSPECTION	221
ASSEMBLY	221
PRESSURE RELIEF VALVE SERVICING	221
DISASSEMBLY	
INSPECTION	222
ASSEMBLY	


HOSE ROUTING AND WATER FLOW DIAGRAMS

HOSE ROUTING AND WATER FLOW DIAGRAMS

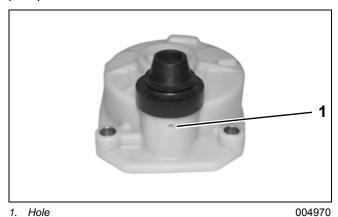
2-CYLINDER MODELS

3-CYLINDER MODELS


COMPONENTS

Water Pump and Intakes

External water intakes mounted in the gearcase housing collect water and must supply the inlet side of the water pump with an unrestricted and unaerated water supply. Water is drawn into the water pump through a hole in the lower plate of the water pump assembly. All cooling water to the powerhead is provided by the water pump.


- A nylon wedge (impeller key) is used to engage the impeller bushing and driveshaft.
- The nylon impeller housing with liner must seal against a separate water pump plate.
- The bottom plate MUST seal to gearcase.
- The pump operates as a positive displacement pump at LOW speeds (below 1500 RPM) and as a centrifugal pump at HIGHER speeds.

Refer to WATER PUMP SERVICE on p. 334, or WATER PUMP SERVICE on p. 356 for servicing.

- Water inlet
- Water outlet
- Seal
- 4. Plate

IMPORTANT: The water pump housing on 2cylinder models includes a small hole to the rear of the water outlet. This hole provides cooling water for the tip of the exhaust passage. Be sure to use the correct parts when replacing the water gump.

Exhaust Housing

2-CYLINDER MODELS

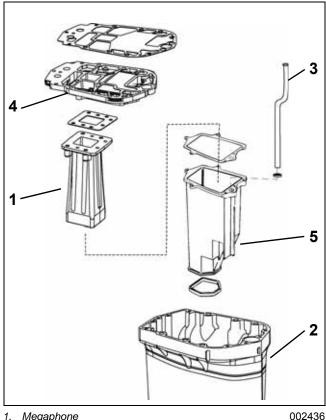
The water pump outlet connects with passages located in the outboard's midsection. A grommet seals the water pump housing to the exhaust housing.

Water supplied to the exhaust housing provides all cooling water to the cylinder block.

Water Supply Tube

3-CYLINDER MODELS

001217

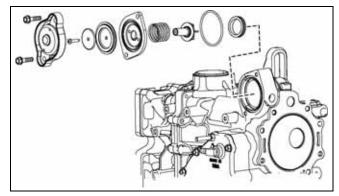

The water pump outlet connects with the water supply tube located in the outboard's midsection. Grommets seal the water tube to the water pump housing and the adaptor housing. The water tube fastens to the base of the adapter housing with a retainer plate and screws.

Water supplied to the water tube provides all cooling water to the adapter housing and cylinder block.

Adapter/Inner Exhaust Housing

3-CYLINDER MODELS

- · Adapts the cylinder/crankcase assembly (powerhead) to the exhaust housing and the water tube.
- Provides water passages which route incoming and outgoing cooling water.
- Provides exhaust passages which connect to the gearcase.


- Megaphone
- 2. Exhaust housing
- Water tube
- Adapter housing
- Inner exhaust housing

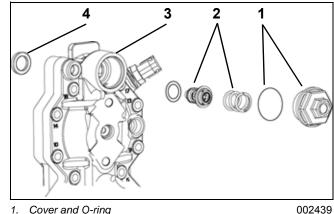
Pressure Relief Valve

A pressure relief valve is used to control water flow and operating temperature at higher speeds (above approximately 1800 RPM). The pressure relief valve opens as water pressure increases. Spring tension sets the opening pressure.

Overheating: A restricted or faulty valve typically results in HIGH SPEED overheating.

Overcooling: Debris may prevent the valve from closing completely.

Pressure relief valve components

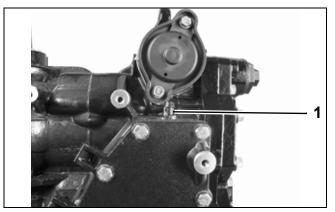

002437

Thermostat

The thermostat controls water flow and operating temperature at lower speeds (below 1800 RPM).

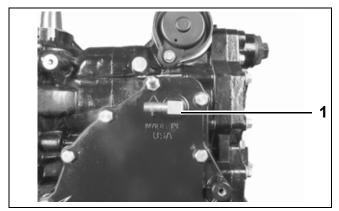
Overheating: A restricted or faulty thermostat typically results in LOW SPEED overheating.

Overcooling: Debris may prevent the thermostat from closing completely.


- Cover and O-ring
- Spring and thermostat
- Cylinder head
- Cylinder head seal

COOLING SYSTEM

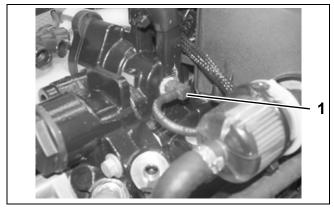
COMPONENTS


Block Venting

A fitting and hose connected to the top of the exhaust cover allows the constant movement of water and/or air from the block. Circulated water flows through the *EMM* and vapor separator before exiting through the overboard indicator.

2-Cylinder models
1. Fitting

002478



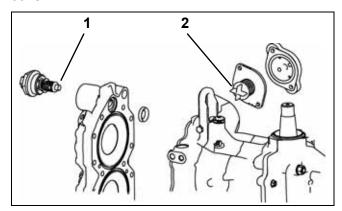
3-Cylinder models
1. Fitting

002440

Water Pressure Connection

A fitting and hose for an accessory water pressure gauge can be connected at the top of the cylinder block next to the pressure valve housing.

1. Fitting 002461


OPERATION

All models use a two-stage cooling system design. The cooling system is dependent on water pump pressure and controlled by thermostat and pressure valve operation.

NOTICE Restricted or inadequate water flow through the outboard reduces cooling system performance and may lead to severe powerhead damage.

Cylinder Block / Cylinder Head Cooling

The flow of water through the cylinder block and cylinder head is controlled by a thermostat and a pressure relief valve. The pressure valve is located in the top of the block next to the exhaust cover.

- 1. Thermostat
- 2. Pressure valve assembly

002441

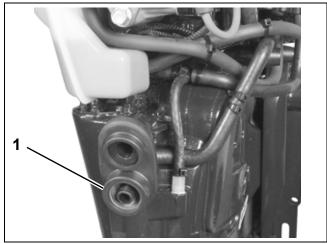
The thermostat and pressure valve control the flow of water entering the vertical water passages of the cylinder head.

At low speed, the pressure valve is against the seat and the thermostat is closed. Warm water from the cylinder block gradually migrates to the thermostat pocket at the top of the cylinder head.

The thermostat opens when the water temperature reaches approximately 143°F (62°C).

When the thermostat opens, water flows down through the cylinder head to a passage in the cylinder block. Water flows through the block to the exhaust housing and then out of the outboard.

At higher speeds, water pressure opens the pressure relief valve at approximately 1800 RPM. Water flows through the valve to the cylinder head and bypasses the thermostat. All water flows through the cylinder head to the outlet passage of the block and then exits through the exhaust housing.


EMM and Vapor Separator Cooling

Cooling water is routed from the top of the cylinder block to the inlet fitting of the *EMM* water cavity. Cooling of the *EMM* helps to stabilize the temperatures of internal components.

IMPORTANT: Improper *EMM* cooling will activate service codes 25 and 29 and the Engine Monitor warning system. Refer to the *EMM* Service Code Chart at the back of this manual for specific service code information.

Cooling water from the *EMM* is routed to the water inlet fitting of the vapor separator water cavity. Cooling the vapor separator fuel chamber minimizes fuel vaporization.

Cooling water from the vapor separator is routed to the overboard indicator.

1. Overboard indicator

004969

ENGINE TEMPERATURE CHECK

IMPORTANT: The engine temperatures listed below are based on an intake water temperature of $70^{\circ} \pm 10^{\circ}$ F ($21^{\circ} \pm 3^{\circ}$ C).

Install correct test propeller and place outboard in a test tank or in the water. Start outboard and run at 3000 RPM in FORWARD gear for at least five minutes. Remember, running outboards at high speeds in test tanks may disrupt water flow to gearcase water intakes. Make sure the outboard has adequate water flow.

CAUTION

When servicing the propeller, always shift the outboard to NEUTRAL, turn the key switch OFF, and twist and remove all spark plug leads so the engine cannot be started accidentally.

Reduce speed to IDLE for five minutes. Check IDLE operating temperature.

Increase speed to 5000 RPM and check temperature.

If engine temperatures are not within range, troubleshoot cooling system.

If engine temperature tests within range, but the engine monitor display indicates a "WATER TEMP" warning, refer to **WATER TEMP/ HOT Circuit Test** on p. 152.

Software Method

Use *Evinrude Diagnostics* software to read temperature displays.

Monitor Screen

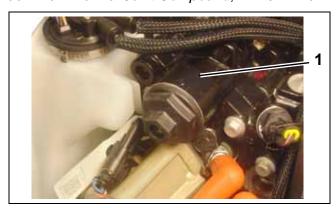
008080

Typical temperature sensor readings at IDLE speed should be $155^{\circ}F \pm 5^{\circ}F$ (68.3°C ± 3°C).

Typical temperature sensor readings at WOT speed should be $160^{\circ}F \pm 40^{\circ}F$ ($71^{\circ}C \pm 22^{\circ}C$).

Operating temperature must not exceed 212°F (100°C).

Pyrometer Method


Use a Temperature Gun, P/N 772018, or a digital pyrometer to measure the outboard's operating temperatures.

Measure temperature of the thermostat housing at the top of cylinder head.

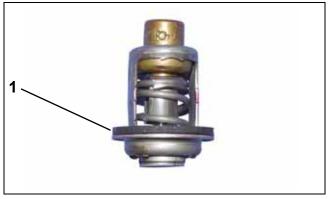
Typical pyrometer readings at IDLE speed should be $145^{\circ}F \pm 10^{\circ}F$ ($63^{\circ}C \pm 6^{\circ}C$).

Typical pyrometer readings at WOT speed should be $150^{\circ}\text{F} \pm 40^{\circ}\text{F}$ ($66^{\circ}\text{C} \pm 22^{\circ}\text{C}$).

IMPORTANT: If you get low or inaccurate readings with a digital pyrometer, coat the probe location with *Thermal Joint Compound*, P/N 322170.

Thermostat housing

006616


IMPORTANT: Digital pyrometer or temperature gun measurements may be slightly lower than software temperature readings.

Idle Operating Temperature Troubleshooting (Below Range)

If engine IDLE temperature is below operating range, 155°F ± 5°F (68.3°C ± 3°C), check thermostat and pressure relief valve operation.

Thermostat Inspection

Check position of thermostat seal and how thermostat seals against cylinder head. Seal must be properly fitted to flange of thermostat.

1. Thermostat seal

006401

Check thermostat for cracks, heat damage, or signs of corrosion. Check for proper operation. Thermostat opens at 143°F (62°C).

Refer to THERMOSTAT SERVICING on p. 220.

Pressure Relief Valve Inspection

The pressure relief valve should be closed at IDLE speed. Water should not flow past the plunger and seal.

Start the outboard and check IDLE operating temperature.

If IDLE temperature is too low, check pressure relief valve plunger and seal for damage or debris that could prevent the valve from closing completely.

If IDLE temperature is still below operating range, replace pressure relief valve assembly and plunger seal.

To test pressure relief valve operation, monitor temperature at the thermostat housing with Temperature Gun, P/N 772018, or digital pyrometer.

Confirm normal IDLE operating temperature.

Slowly increase engine speed from IDLE, up through 2500 RPM.

Engine temperature should decrease from normal IDLE temperatures as pressure relief valve opens. Valve should open between 1800-2200 RPM.

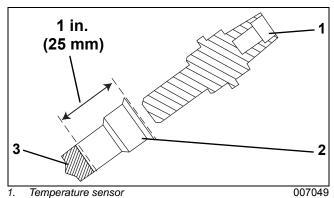
If temperature decreases at a lower RPM, replace pressure relief valve assembly.

Refer to **PRESSURE RELIEF VALVE SERVIC-ING** on p. 221.

TEMPERATURE SENDER SERVICING

Removal

Loosen sensor and remove by hand. Use care to avoid breaking threads.


006949

Clean sensor threads, sensor, and sensor cavity.

Installation

Fill bottom of sensor cavity with 0.7 cc of *Thermal Joint Compound*, P/N 322170. Sensor cavity should be filled to 1 inch (25 mm) below the top edge of the cavity.

Install sensor. DO NOT use gasket sealing compound. SLOWLY tighten temperature sensor to a torque of 50 to 70 in. lbs. (5.6 to 8.0 N·m).

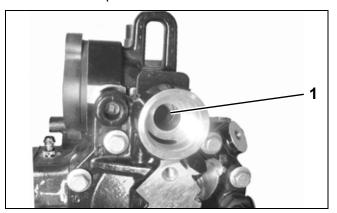
- 2. Sensor cavity
- 3. Thermal joint compound

Wait 10 minutes for trapped air to bleed from cavity. Thermal compound may seep past threads. Retighten sensor.

THERMOSTAT SERVICING

Disassembly

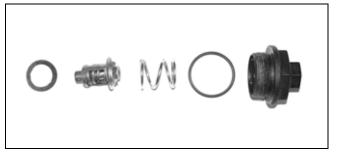
Remove the thermostat cover and O-ring from cylinder head.


006616

Remove spring, thermostat, and gasket.

002444

Remove the cylinder head if cylinder head thermostat seal requires replacement. Place new seal in the cylinder head with side marked "TO CYL HEAD" facing thermostat. Refer to **Cylinder Head Installation** on p. 245.



1. Cylinder head seal

002445

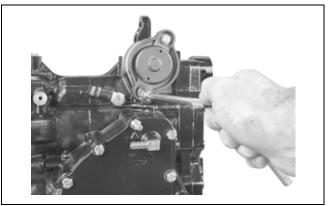
Inspection

Inspect all parts for cracks, heat damage, or signs of corrosion. Replace damaged parts. Clean debris from housing and parts.

000756

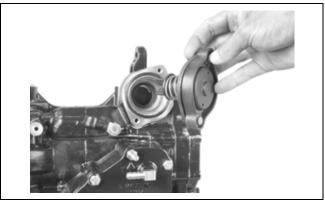
Assembly

Assembly is the reverse of disassembly. Pay close attention when performing the following additional tasks.


Coat threads of thermostat cover with *Gasket Sealing Compound* and install new O-ring. Install and tighten cover to a torque of 120 to 144 in. lbs. (13.5 to 16 N·m).

PRESSURE RELIEF VALVE SERVICING

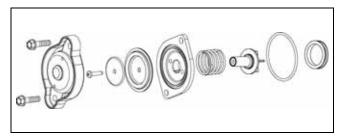
The pressure relief valve assembly should be serviced at the same time as the thermostat.


Disassembly

Remove screws and cover from pressure valve assembly.

002443

Remove the pressure relief valve assembly.


002459

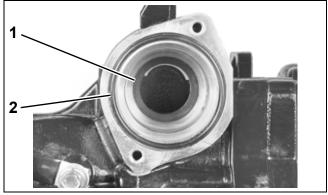
COOLING SYSTEM

PRESSURE RELIEF VALVE SERVICING

Inspection

Inspect all parts for cracks, heat damage, or signs of corrosion. Replace damaged parts. Clean debris from housing and parts.

Pressure Relief Valve Assembly Components


002442

Assembly

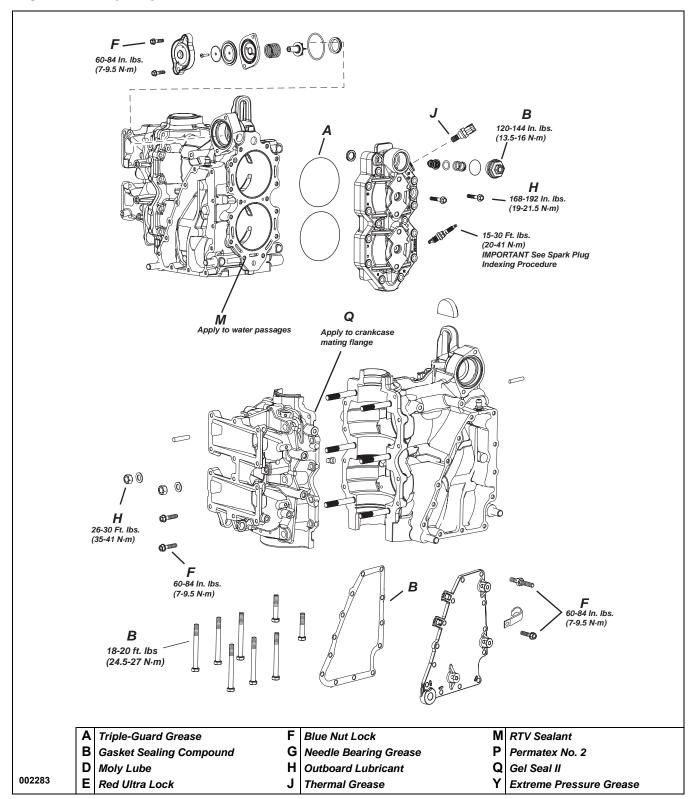
Assembly is the reverse of disassembly. Pay close attention when performing the following additional tasks.

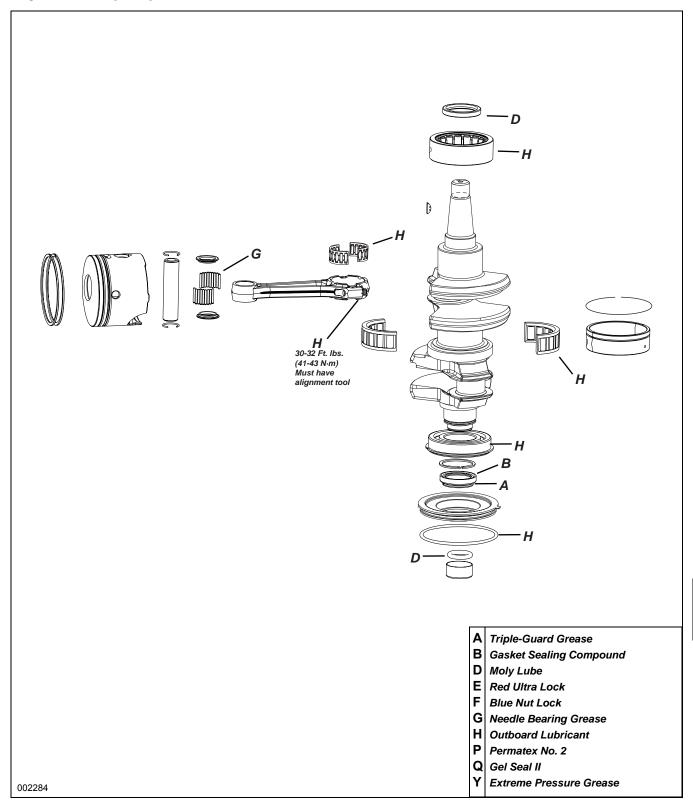
Install a **new** plunger seal squarely over ridge in housing.

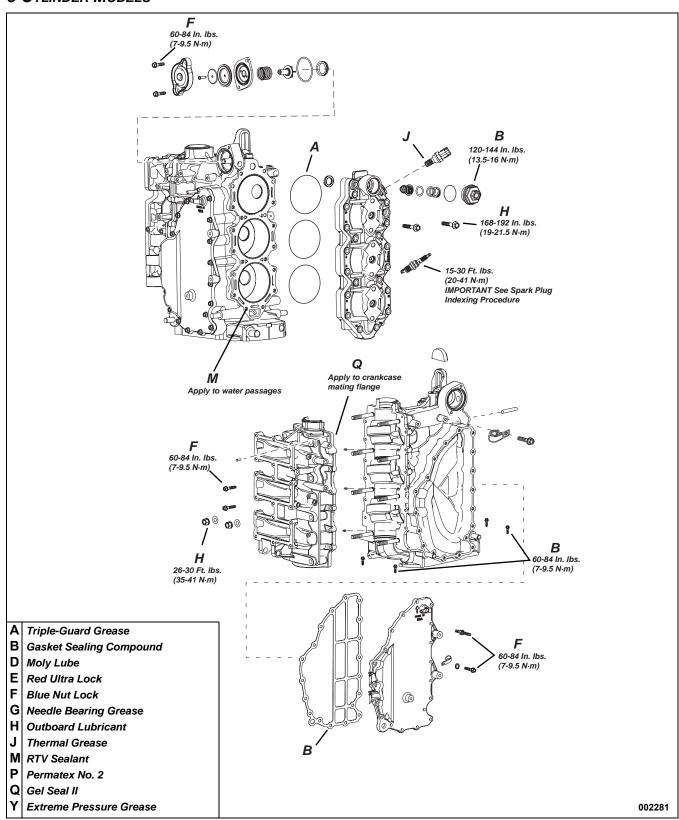
Apply a light coat of *Triple-Guard* grease to a **new** cover o-ring and place in groove in housing.

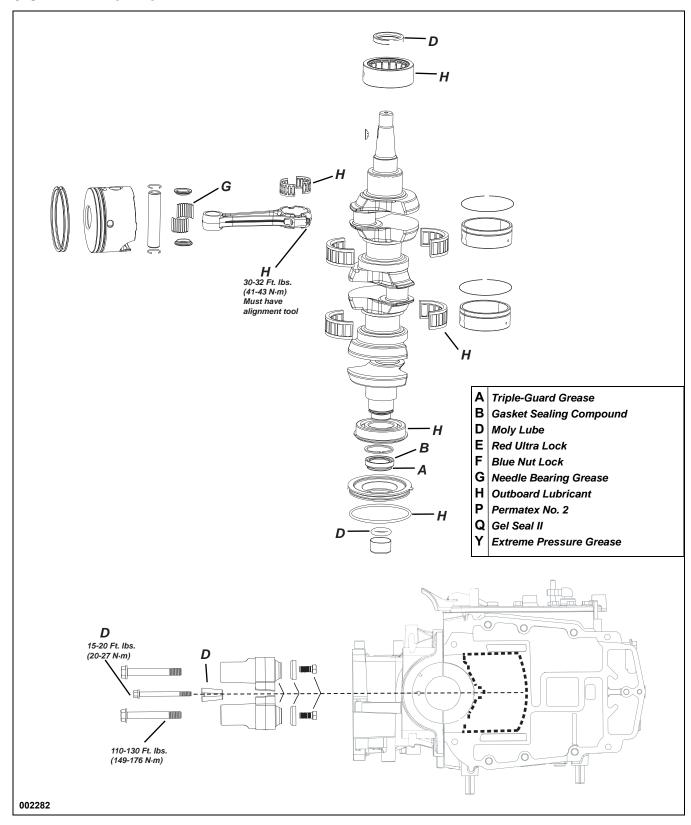
Plunger seal
 Cover o-ring

002458


Install valve assembly into housing.


Tighten cover screws to a torque of 60 to 84 in. lbs. (7 to 9.5 $N \cdot m$).


TABLE OF CONTENTS


SERVICE CHART	
COMPRESSION TESTING	. 228
POWERHEAD REMOVAL	. 228
POWERHEAD DISASSEMBLY	231
SYSTEMS REMOVAL	. 231
THROTTLE LINKAGE REMOVAL	232
SHIFT LINKAGE REMOVAL	. 232
CRANKCASE DISASSEMBLY	
CYLINDER HEAD REMOVAL	
CONNECTING RODS AND PISTONS	
CRANKSHAFT REMOVAL	
CYLINDER BLOCK CLEANING	
POWERHEAD INSPECTION	. 239
POWERHEAD ASSEMBLY	241
CRANKSHAFT ASSEMBLY	. 241
PISTONS AND CONNECTING RODS	243
CYLINDER HEAD INSTALLATION	245
CRANKSHAFT AND CONNECTING ROD INSTALLATION	246
CRANKCASE ASSEMBLY	
SHIFT LINKAGE INSTALLATION	250
THROTTLE LINKAGE INSTALLATION	. 251
FINAL POWERHEAD ASSEMBLY	
UPPER MOUNT SERVICING (3-CYLINDER)	. 253
POWERHEAD INSTALLATION	254
POWERHEAD MOUNTING – 2-CYLINDER MODELS	254
POWERHEAD MOUNTING - 3-CYLINDER MODELS	256
SHIFT LINKAGE ADJUSTMENT	258
POWERHEAD VIEWS	259
2-CYLINDER PORT – HOSE ROUTINGS	259
2-CYLINDER STARBOARD – HOSE ROUTINGS	259
2-CYLINDER PORT DRESSED POWERHEAD	260
2-CYLINDER STARBOARD DRESSED POWERHEAD	260
2-CYLINDER PORT ROPE START MODELS	261
2-CYLINDER STARBOARD ROPE START MODELS	261
2-CYLINDER FRONT	
2-CYLINDER REAR	
2-CYLINDER TOP	_
2-CYLINDER TOP, ROPE START MODELS	
3-CYLINDER PORT – HOSE ROUTINGS	
3-CYLINDER STARBOARD – HOSE ROUTINGS	
3-CYLINDER PORT DRESSED POWERHEAD	
3-CYLINDER STARBOARD DRESSED POWERHEAD	
3-CYLINDER FRONT	
3-CYLINDER REAR	
3-CYLINDER TOP	. 270

SERVICE CHART

COMPRESSION TESTING

Start and run outboard until it achieves operating temperature, then shut OFF.

Disconnect crankshaft position sensor (CPS) connector. Remove all spark plugs.

Advance throttle linkage to WOT.

Install compression tester's hose attachment into spark plug hole (14 mm threads).

While cranking outboard with starter, note maximum pressure reading on gauge. Repeat procedure for each cylinder.

If engine shows a variation greater than 15 psi (100 kPa) between cylinders, check for:

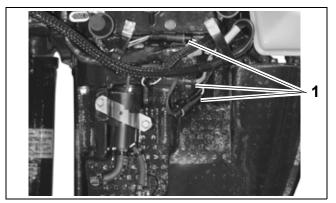
- damaged cylinder head
- · damaged pistons
- · broken or stuck piston rings
- scored cylinder walls

Return throttle to idle position and reconnect CPS connector. Replace spark plugs. Refer to Spark Plug **Indexing** on p. 90.

POWERHEAD REMOVAL

2-Cylinder Models

A


WARNING

Protect against hazardous fuel spray. Before starting any fuel system service, carefully relieve fuel system pressure. Refer to Relieving Fuel System Pressure on p. 183.

To prevent accidental starting while servicing, twist and remove spark plug leads.

Remove lower motor covers. **Lower Cover Removal** on p. 96.

Disconnect power trim connectors and exhaust water valve electrical connector (60, 65).

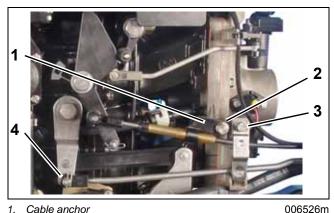
1. Connectors

005200

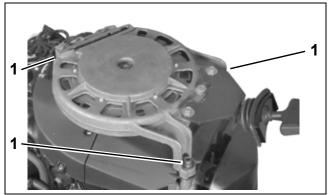
Disconnect cooling water hoses from exhaust housing.

- 1. Overboard indicator hose
- 2. Drain hose

004298


Remove pin and washer from shift rod lever to release the lower shift rod.

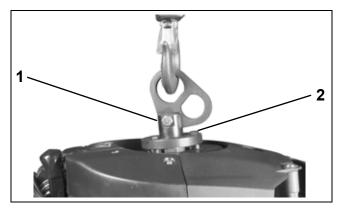
Shift rod screw


ROPE START MODELS

Remove throttle cable and tiller shift rod.

- 1. Cable anchor
- Anchor screw
- Cable retainer
- Shift rod retainer

Remove the recoil starter housing and starter ratchet. Refer to RECOIL STARTER REMOVAL on p. 399.

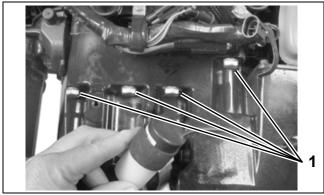

1. Starter housing screws (3)

002515

ALL MODELS

Install Lifting Fixture, P/N 396748, on flywheel and seat the three screws completely.

NOTICE Be sure to use only the 1 1/8 in. (short) screws, P/N 398067, included with the tool to avoid damage to electronic components under the flywheel.


Lifting fixture 1 1/8 in. screws

002098

Fasten appropriate chain hook to eye of tool and support weight of powerhead with hoist.

Loosen the screws holding the exhaust water valve to the exhaust housing.

Move water valve aside and remove the eight exhaust housing to powerhead screws.

Powerhead screws

004292

Use a suitable tool to carefully separate the powerhead from exhaust housing.

IMPORTANT: Do not damage the powerhead or exhaust housing mating surfaces.

POWERHEAD REMOVAL

3-Cylinder Models

A

WARNING

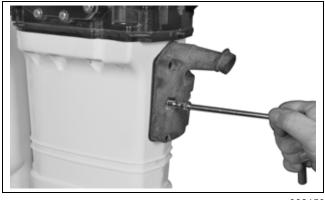
Protect against hazardous fuel spray. Before starting any fuel system service, carefully relieve fuel system pressure. Refer to Relieving Fuel System Pressure on p. 142.

To prevent accidental starting while servicing, twist and remove spark plug leads.


Remove lower motor covers. **Lower Cover Removal** on p. 96.

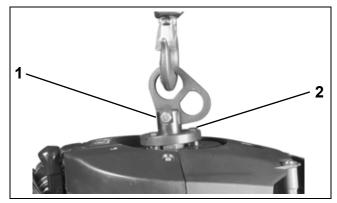
Disconnect power trim connectors.

002152


Remove pin and washer from shift rod lever to release the lower shift rod.

1. Shift rod pin

002013


Remove six retaining screws and exhaust relief muffler.

002159

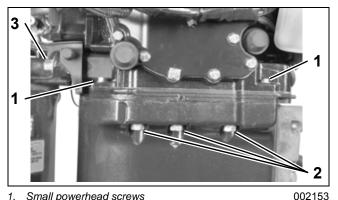
Install Lifting Fixture, P/N 396748, on flywheel and seat the three screws completely.

NOTICE Be sure to use only the 1 1/8 in. (short) screws, P/N 398067, included with the tool to avoid damage to electronic components under the flywheel.

Lifting fixture
 1 1/8 in. screws

002098

Fasten appropriate chain hook to eye of tool and support weight of powerhead with hoist.


Remove the small powerhead screw at rear.

Rear small powerhead screw

002160

Remove remaining four small powerhead screws, six large powerhead screws, and the upper mount screws.

- Small powerhead screws
- Large powerhead screws
- Upper mount screws

Use a suitable tool to carefully separate the powerhead from exhaust housing.

002161

IMPORTANT: Do not damage the powerhead or exhaust housing mating surfaces.

POWERHEAD DISASSEMBLY

Systems Removal

To simplify reassembly and wiring installation, lay out the various screws and clamps in the order of their proper location.

Remove the electric starter. Refer to Starter Removal on p. 159.

Remove the oil tank. Refer to Oil Tank Assembly on p. 207.

Remove fuel pump assemblies, fuel manifolds, and filter. Refer to FUEL COMPONENT SERVIC-**ING** on p. 183.

Remove *EMM*, then electrical harness assembly. Label connectors for reassembly locations. Refer to EMM SERVICING on p. 116.

Remove flywheel and stator. Refer to **FLYWHEEL** AND STATOR SERVICING on p. 154.

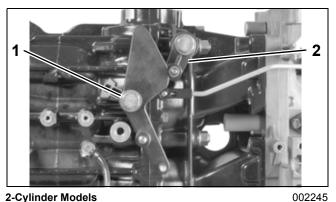
Remove ignition coils and fuel injectors. Refer to Fuel Injector Service on p. 187.

IMPORTANT: Mark injectors for cylinder location before removal. All injectors must be installed in their original location. Improper injector installation can result in powerhead failure.

Remove all oil distribution and recirculation hoses.

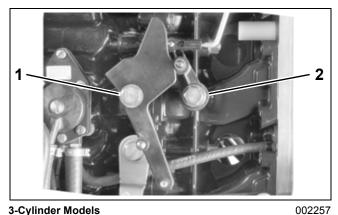
Remove throttle linkage. Refer to Throttle Linkage Removal on p. 232.

Remove shift linkage. Refer to Shift Linkage Removal on p. 232.


Remove the throttle body and reed plate assemblies. Refer to Intake Manifold Service on p. 189.

Remove pressure valve assembly. Refer to PRESSURE RELIEF VALVE SERVICING on p. 221.

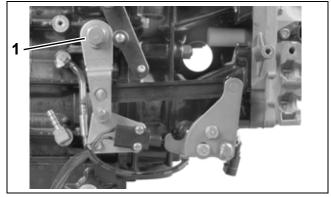
POWERHEAD DISASSEMBLY


Throttle Linkage Removal

Remove throttle cam and throttle lever.

2-Cylinder Models

- Throttle lever screw
- 2. Throttle return lever


3-Cylinder Models

- Throttle cam screw Throttle lever screw

Shift Linkage Removal

Remove shoulder screw from shift arm and retaining screw from shift rod lever.

Remove the cotter pin and washer holding the shift shaft (2-cylinder models).

1. Shift lever screw

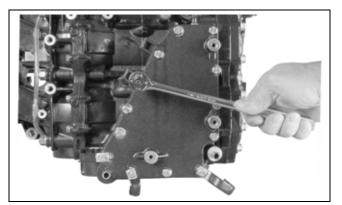
002250

- Shift rod lever screw
- Cotter pin

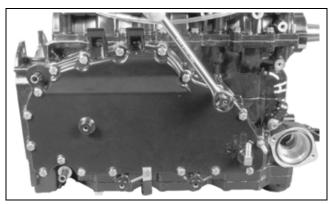
002246

Slide entire shift linkage assembly from crankcase.

Remove the ball, guide, and spring of the shift detent assembly from the crankcase.



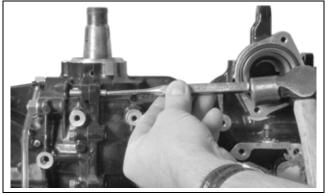
Shift detent assembly


002135

Crankcase Disassembly

Remove screws and carefully pry off exhaust side water cover.

002234



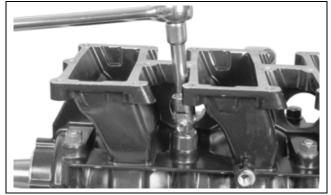
002124

M WARNING

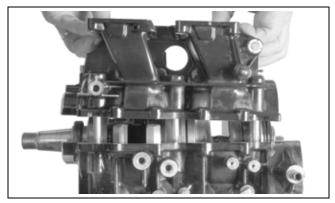
Wear safety glasses to avoid injury.

Use a 1/8 in. diameter pin punch to push crank-case taper pin toward the front side of the engine.

002232


IMPORTANT: Do not use a tapered punch or any other tool that could jam in or damage the taper bore when removing the pin.

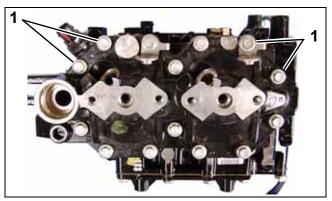
Remove crankcase flange screws.


002137

Loosen **in stages** and remove the main bearing nuts and washers.

002138

Separate crankcase and cylinder block. It may be necessary to tap on crankshaft with a rawhide or rubber mallet to loosen.

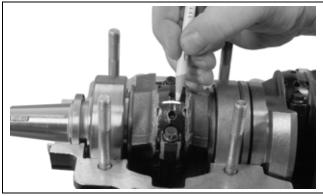

002252

POWERHEAD DISASSEMBLY

Cylinder Head Removal

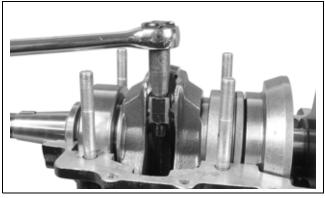
Remove thermostat cover and thermostat assembly. Refer to **THERMOSTAT SERVICING** on p. 220.

Loosen **in stages** and remove cylinder head retaining screws. Remove the cylinder head. Discard thermostat seal and O-rings.



1. Cylinder head screws

007850


Connecting Rods and Pistons

Use a permanent marker to identify each connecting rod cap, connecting rod, and piston by cylinder number. Number 1 is closest to the flywheel.

002140

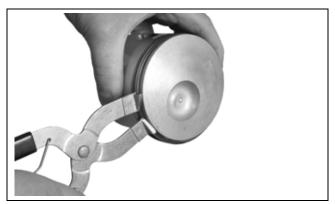
Use Torquing Socket, P/N 331638, to loosen **in stages** the rod cap retaining screws. DO NOT remove the screws.

002123

Use one hand to support the piston, and remove the rod cap screws with your other hand. Remove each piston and rod assembly.

002141

NOTICE Reattach each rod cap to its rod as soon as the piston is removed. Each cap is unique and can only be installed on its mated rod. Do not allow rod to contact inside surface of cylinder or crankshaft.


IMPORTANT: Identify all internal components so that if reused, they can be reinstalled in their original positions.

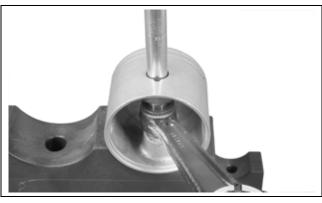
Repeat steps for each remaining piston and connecting rod.

Use an appropriate ring expander to remove all piston rings from pistons. Discard the rings.

▲ WARNING

Wear safety glasses to avoid injury.

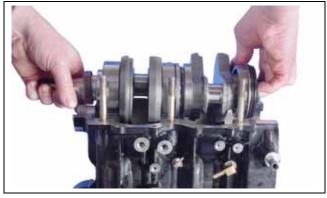
002054


Remove wrist pin retaining rings. Discard retaining rings.

002046

The wrist pin fit is loose on both sides. Push the wrist pin through to free the piston from the con-

necting rod. If necessary, use Wrist Pin Pressing Tool, P/N 326356, to remove the wrist pin bearing.

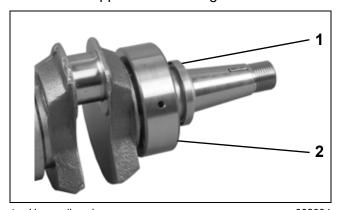


002047

Be careful not to lose any of the 28 needle bearings or the two wrist pin washers. If any of the bearings are worn or lost, replace all 28 bearings during reassembly.

Crankshaft Removal

Carefully lift crankshaft straight up and remove from crankcase.



002263

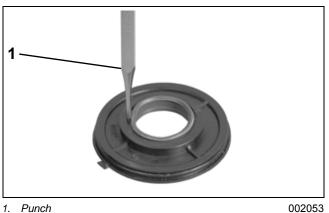
Remove upper seal from crankshaft. Discard the seal. A new upper seal must be installed on assembly.

POWERHEAD DISASSEMBLY

Remove the upper main bearing.

Upper oil seal Upper main bearing 002034

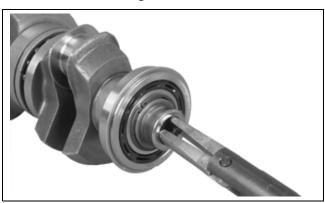
Remove the lower bearing seal housing.


002042

Remove the housing O-ring. Discard O-ring.

002044

Use a punch to remove the housing seal. Discard seal.


Inspect housing and replace if necessary.

Remove O-ring from crankshaft sleeve and inspect it. Replace the O-ring if it is not in good condition.

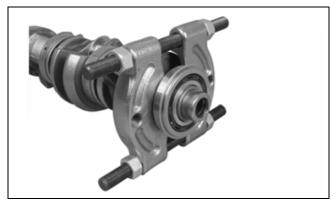
002040

Inspect the crankshaft sleeve and replace if necessary. To remove the sleeve, use Slide Hammer, P/N 432128, and Large Puller Jaws, P/N 432129.


002041

Remove the lower main bearing only if it needs to be replaced. Use external retaining ring pliers to remove the lower bearing retaining ring.

002039


Remove center main bearings and split sleeves for inspection. DO not mix parts. Note location of bearings for reassembly.

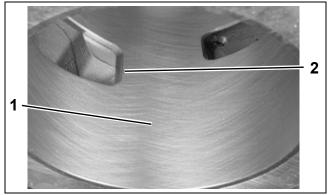
24381

IMPORTANT: If the lower main bearing is removed from the crankshaft, it must be discarded. DO NOT reuse it.

Use a bearing separator to support the bearing, and press off the crankshaft.

002052

CYLINDER BLOCK CLEANING


IMPORTANT: Before inspecting or assembling powerhead, all internal components must be completely clean and free of contaminants.

Remove any carbon accumulation from exhaust port areas.

Remove any carbon accumulation from cylinder head combustion chambers.

If cylinder walls are glazed from extended use, use a rigid, medium grit cylinder hone to resurface walls. Use slow RPM for best oil retention and ring sealing. When finished, a cross hatch pattern of 22 to 32° should be visible in the cylinder wall. The pattern should be uniform in both directions.

IMPORTANT: To avoid piston or cylinder block damage, restore the chamfer to all port edges using a ball hone or other suitable tool.

- 1. Crosshatch pattern in cylinder wall
- 2. Chamfered port edge

Use *Gel Seal and Gasket Remover* to remove all traces of gaskets, adhesives, and *Gel-Seal II*TM sealant from the cylinder block and crankcase.

A

WARNING

To avoid personal injury, wear eye protection and rubber gloves when using *Gel Seal and Gasket Remover*.

002068

Carefully remove any carbon accumulation from the tops and ring grooves of the piston using *Engine Tuner*. A ring groove cleaning tool can be made by breaking an old ring and grinding an angle on its end. Do not damage ring grooves while cleaning.

Thoroughly wash entire cylinder block and crankcase with warm, soapy water to remove all traces of contaminants.

Air dry cylinder block and crankcase. Blow all holes and passageways with compressed air.

002067

WARNING

To avoid personal injury, wear eye protection and set compressed air pressure at less than 25 psi (172 kPa).

Cover the cylinder walls with a liberal amount of outboard lubricant to prevent corrosion.

POWERHEAD INSPECTION

For dimensions, refer to **SERVICE SPECIFICA-TIONS** on p. 10.

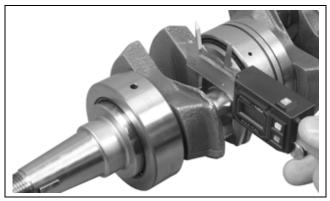
IMPORTANT: Before any inspection process can begin, all internal components must be completely clean and free of contaminants.

Visually inspect all parts. Check for unusual wear patterns, scuffing, or deterioration of aluminum parts, heat-related discoloration of bearings and bearing surfaces, and broken components.

Cylinder Head

Check for cylinder head warpage using a piece of bar stock or machinist's straightedge and a feeler gauge set.

Cylinder head warpage must not exceed 0.006 in. (0.15 mm) per inch of measurement. Replace head if warpage exceeds this dimension.



24423

Check fuel deflector pins for damage.

Crankshaft

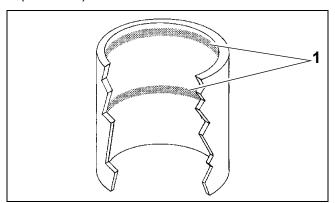
Measure the diameter of each crankpin and main bearing journal. The lower main bearing journal would only be measured if the bearing was removed for another reason.

002142

Cylinder Bore

Use a Cylinder Bore Gauge to inspect each cylinder bore for an out-of-round, oversize, or tapered condition. Be sure the gauge is perfectly square in the bore when measuring.

007283


Measure each cylinder in at least two areas. Each area should be measured twice. The difference between the two measurements in each area is the cylinder out-of-round dimension.

 The cylinder must not be out-of-round by more than 0.004 in. (0.10 mm).

POWERHEAD INSPECTION

The dimensional difference between the two areas is cylinder taper.

 The cylinder taper must not exceed 0.002 in. (0.05 mm).

1. Measurement areas

DR3482

The difference between the measurements and standard bore is cylinder oversize. For dimensions, refer to **SERVICE SPECIFICATIONS** on p. 10.

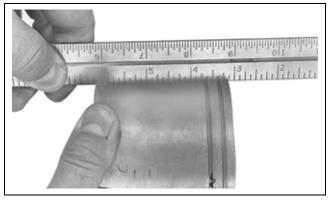
 The cylinder must not be oversized by more than 0.003 in. (0.08 mm).

Pistons

Visually inspect pistons for signs of abnormal wear, scuffing, cracks, or burning.

Piston Rings

For new ring sets, place each ring separately in its respective bore. Use a piston to square the ring in the cylinder. Use a feeler gauge to measure the ring end gap.



002143

-

IMPORTANT: Ring end gap increases approximately 0.003 in. (0.076 mm) for each 0.001 in. (0.025 mm) increase in cylinder bore diameter. DO NOT exceed cylinder oversize dimension.

Use a machinist's straightedge to check for proper ring clearance. Position piston rings on piston. Push rings into groove and hold straightedge against the side of the piston. Rings must be even or just below the surface of piston. Rings must move freely in piston ring groove.

31796

Bearings

Inspect center main bearings and split sleeves for excess wear, nicks, or scratches. Replace if necessary.

Inspect crankshaft rod bearings for excess wear, nicks, or scratches. Replace if necessary.

24381

Ring end gap should be:

• 0.011 to 0.023 in. (0.28 to 0.58 mm)

POWERHEAD ASSEMBLY

IMPORTANT: Proceed slowly. Make no forced assemblies unless a pressing operation is called for. All internal components must be perfectly clean and lightly coated with outboard lubricant.

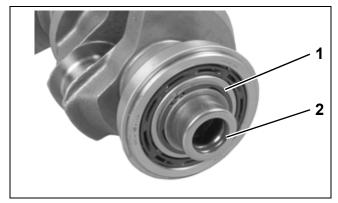
IMPORTANT: Use new wrist pin retaining rings, gaskets, seals, and O-rings during assembly.

Crankshaft Assembly

Oil the end of the crankshaft. Use Crankshaft Bearing/Sleeve Installer, P/N 338647, and place a new lower main bearing onto crankshaft with lettered side facing the tool. Install bearing until it seats on the crankshaft.

002029

Oil the end of the crankshaft. Use Crankshaft Bearing/Sleeve Installer, P/N 338647, to drive a new sleeve onto the crankshaft until the installer contacts the lower main bearing.

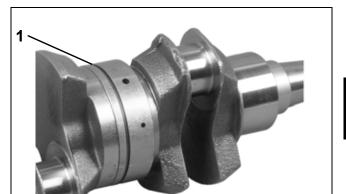

002030

If the installer sticks on the sleeve after installation, thread Slide Hammer, P/N 391008, into installer and pull it off.

IMPORTANT: Inspect sleeve after installation. Sleeve must not be used if surface is damaged.

Use retaining ring pliers to install bearing retaining ring with sharp edge facing away from bearing.

Lubricate a new driveshaft O-ring and lightly lubricate crankshaft splines with *Moly Lube*. Install O-ring in sleeve.



1. Bearing retaining ring

2. O-ring

002031

Lubricate the center main bearings and split sleeves with outboard lubricant and install them in their original positions. The split sleeve ring grooves must face toward driveshaft (lower) end of crankshaft when installed.

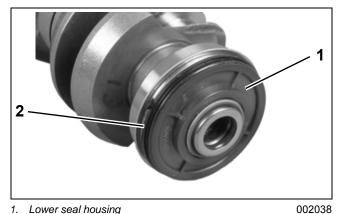

1. Groove toward driveshaft end

002032

Lightly coat the outside edge of a new lower housing seal with *Gasket Sealing Compound*. Press against outer case of the seal to install seal in the

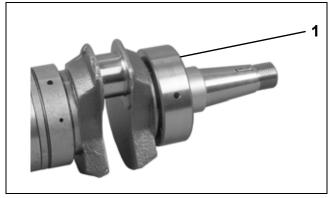
POWERHEAD ASSEMBLY

lower housing with extended lip facing down. Lubricate seal lip with *Triple-Guard* grease.


1. Seal lip 002036

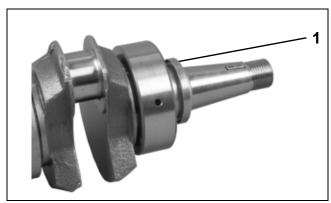
002037

Install a new O-ring on the lower housing. Before installing crankshaft into cylinder block, apply a thin coat of Gasket Sealing Compound to outer edge of O-ring.


Place lower seal housing on crankshaft.

Lower seal housing

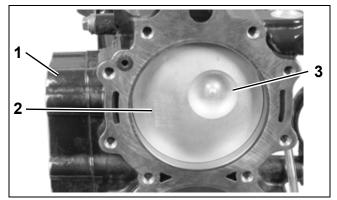
2. O-ring


Lubricate upper main bearing with outboard lubricant and install on crankshaft.

Upper main bearing

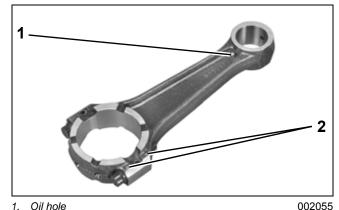
002033

Pack lip of upper oil seal with Moly Lube. Place seal on crankshaft with lip down and enclosed face up. Do not apply sealer to outside edge of the seal.


Upper oil seal

002034

Pistons and Connecting Rods

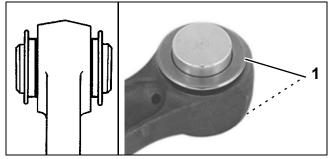

NOTICE It is very important that the pistons in this engine are installed in the correct location and direction. Engine damage will occur if installed incorrectly.

New pistons are stamped "EXH." This marking should be turned toward the exhaust side of the block. The splash bowl on the dome of the piston will be located toward the top and starboard side of the block.

- Exhaust side of block
- Stamped markings
- Splash bowl

NOTICE It is also very important that the connecting rods are installed with the alignment dots and the diagonal oil hole facing up, toward the flywheel.

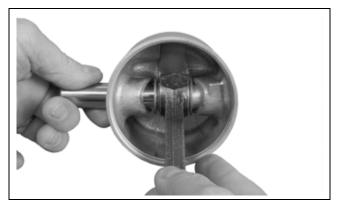
- Oil hole
- Raised dots


Apply Needle Bearing Grease to the wrist pin bearings. Install the bearings in the small end of the connecting rod. Align bearings with Wrist Pin Bearing Tool, P/N 336660.

28 needle bearings

Wrist pin bearing tool

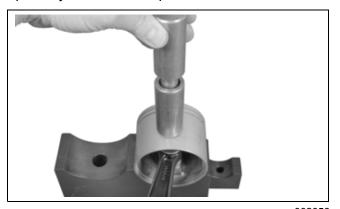
Place the two wrist pin thrust washers on the tool with flat side of the washers facing out.

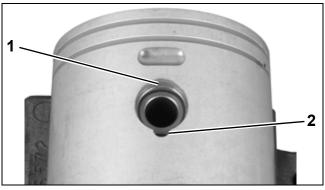

1. Wrist pin thrust washers

002049

DR3480 24902

Oil the wrist pin bore and wrist pin. Place connecting rod, with bearings, washers, and tool, into the piston with the alignment dots facing the top of the piston.


Install wrist pin through piston and connecting rod, pushing bearing tool out through the piston.

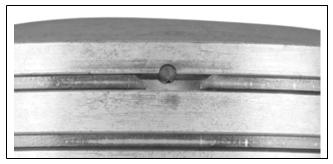

002057

POWERHEAD ASSEMBLY

Use Wrist Pin Cone, P/N 318600, and Driver, P/N 318599, to install new wrist pin retaining rings in each wrist pin hole. Gap of retaining ring faces up, away from notch in piston.

002058

1. Gap of retaining ring


Notch in piston

002050

Installing Pistons

When all pistons and connecting rods are assembled, install piston ring sets. Be sure rings are installed in the cylinder used to test ring end gap. Refer to **POWERHEAD INSPECTION** on p. 239.

IMPORTANT: Be sure gap of ring fits squarely around dowel pin.

002048

NOTICE Before continuing, make sure that all *Gel-Seal II* has been removed from the cylinder block and crankcase mating flanges. If traces of hardened *Gel-Seal II* are left, main bearings could be misaligned. Refer to CYLINDER BLOCK CLEANING on p. 238.

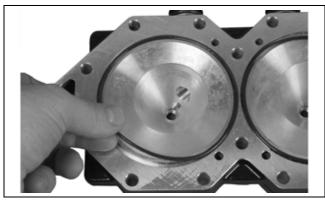
Coat pistons, rings, cylinder walls, and an appropriate ring compressor with outboard lubricant.

Center connecting rod in piston and locate piston rings on dowel pins. Place appropriate ring compressor on piston.

Slide piston and rod assembly into the correct cylinder, as marked during disassembly. Guide connecting rod through cylinder block to avoid scratching cylinder wall.

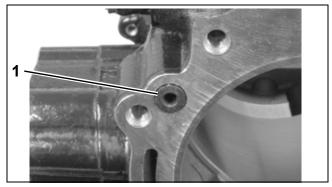
1. Ring compressor

002059

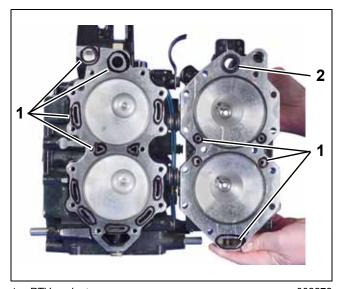

Repeat steps for each piston.

Cylinder Head Installation

Install a new thermostat seal in cylinder head with side marked "TO CYL HEAD" facing toward thermostat.


Refer to **THERMOSTAT SERVICING** on p. 220 before installing cylinder head.

Lightly lubricate new cylinder head O-rings with *Triple-Guard* grease and install in cylinder head.

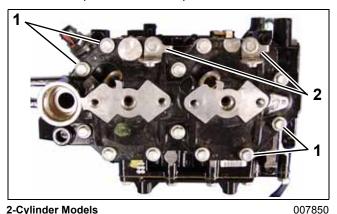

002061

Apply soapy water to water dam and insert into block.

1. Water dam 002062

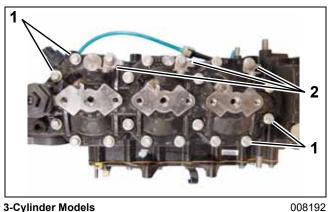
Apply a 1/16 in. (2 mm) bead of *RTV Adhesive* around each water passage on the block and cylinder head as shown.

RTV sealant
 Thermostat seal


002272

Install cylinder head with the thermostat toward the top. Place ignition coil brackets as shown below.

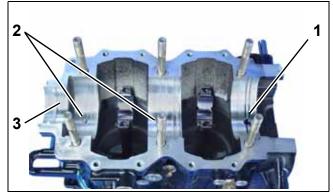
Apply outboard lubricant to screw threads and install the cylinder head screws. DO NOT use any sealant or locking compound on threads.


POWERHEAD ASSEMBLY

Following sequence stamped on cylinder head, tighten all screws in stages to a torque of 168 to 192 in. lbs. (19 to 21.7 N·m).

2-Cylinder Models

- Cylinder head screws
- Ignition coil bracket


Cylinder head screws

2. Ignition coil bracket

Crankshaft and Connecting Rod Installation

Apply Gasket Sealing Compound to lower oil seal groove in cylinder block. DO NOT put any sealer in upper seal groove.

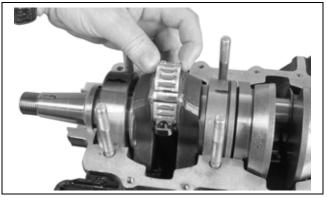
Check that main bearing alignment dowel pins are seated in the block.

- Gasket Sealing Compound
- Dowel pins
- No sealer here

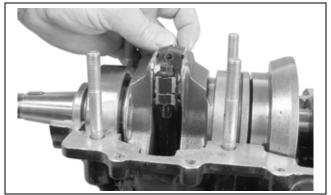
002262

Push all pistons to the top of cylinders. Remove numbered connecting rod caps.

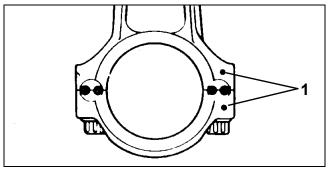
Gently lower crankshaft into place.


- Align tab on lower bearing seal housing with hole in crankcase.
- Align upper oil seal in groove.
- Locate each main bearing on its dowel pin. A mark placed on the bearing race opposite the dowel pin hole will help in the alignment process.

- 1. Lower seal housing
- 2. Upper oil seal
- 3. Alignment marks


002070

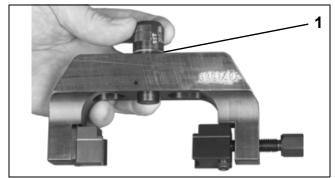
Lubricate each crankpin and bearing assembly with outboard lubricant. Slowly pull connecting rod up to crankshaft and install bearing halves.


002115

Lubricate rod cap screw threads and under screw head mating surface with outboard lubricant. Align dot on rod cap with dot on the connecting rod. Install rod cap screws finger tight (NO MORE than 6 in. lbs. (1 N·m) maximum).

002116

IMPORTANT: Be sure alignment dot on rod cap matches dot on rod and that both dots face flywheel.

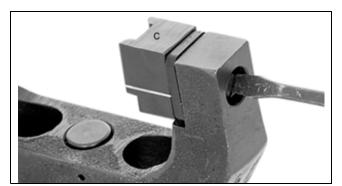


1. Alignment dots

53628

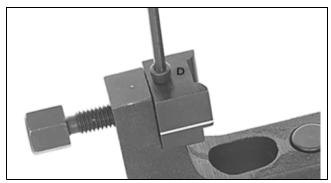
NOTICE Tightening rod cap screws without Alignment Fixture, P/N 396749, or using an incorrect procedure could cause permanent damage to the connecting rod and crankshaft. To maintain accurate torque values, keep torque wrench extension length to a minimum.

Install Rod Cap Alignment Fixture, P/N 396749, **before** tightening rod cap screws. Align the flat marked "SET" on the rod engagement stop with the arrow on the frame. Position stop at the center setting (one line showing). Rotate adjustment knob 180° to lock in position.



1. Center position, one line showing

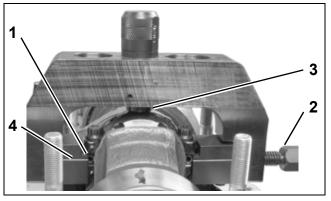
002484


POWERHEAD ASSEMBLY

Secure restraining jaw "C" and forcing jaw "D" to frame.

Restraining Jaw "C"

21591


Forcing Jaw "D"

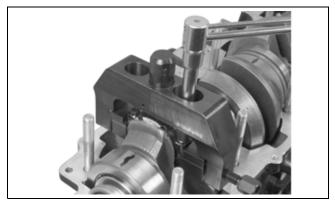
21594

Apply a light coat of outboard lubricant to the corners of the connecting rod and rod cap. Place frame on connecting rod using the following procedure.

- Place frame onto the connecting rod so the contact area of the jaw is centered on the side of the rod.
- Tighten forcing screw until jaws contact connecting rod.
- Slide frame down until adjustment stop contacts the rod cap. The groove lines on the jaws must be centered on the rod/crankpin diameter.

 Tighten the forcing screw to a torque of 14 to 16 in. lbs. (1.6 to 1.8 N·m).

- 1. Contact area of jaw
- 2. Forcing screw
- Adjustment stop
- 4. Groove line

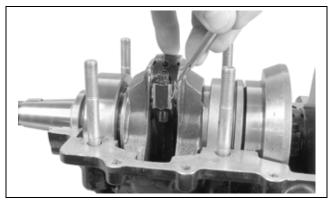

002071

IMPORTANT: Make sure that frame is squarely in position and that rod and cap are aligned.

Loosen both rod cap screws one-quarter turn.

Use Torquing Socket, P/N 331638, to tighten rod cap screws in three stages:

- Apply first torque of 40 to 60 in. lbs. (5 to 7 N·m) to both rod cap screws.
- Tighten screws to a torque of 14 to 16 ft. lbs. (19 to 21.7 N·m).
- Apply final torque of 30 to 32 ft. lbs. (41 to 43 N·m).



002072

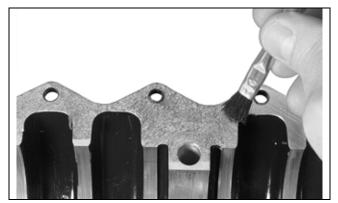
IMPORTANT: If a new screw is used, it must be installed as above. Then, it must be removed, relubricated, and installed again.

Loosen forcing screw and remove the frame.

Test at least three corners of the rod and cap joint with a pick. Joint must be smooth with no step.

002117

Crankcase Assembly


Make sure crankshaft is still seated on dowel pins before assembling crankcase.

Thoroughly clean and degrease the mating flanges of the crankcase and cylinder block with a non-petroleum based solvent, such as isopropyl alcohol or acetone, and let air dry.

IMPORTANT: DO NOT allow solvent to get on internal components. Clean only the mating flanges.

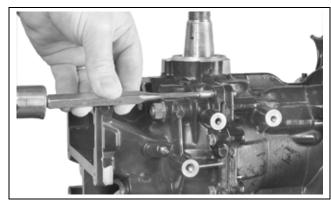
Apply *Gasket Sealing Compound* to lower oil seal groove in crankcase. DO NOT put any sealer in upper seal groove.

Use a small brush with a tapping motion to apply a thin, even coat of *Gel-Seal II* sealant to the crankcase mating flange. The sealer must not come within 1/4 in. (6.4 mm) of bearings.


TYPICAL 003874

IMPORTANT: Gel-Seal II has a shelf life of at least one year when stored at room temperature. Test the Gel-Seal II or replace it if the age of the tube cannot be determined. Using old Gel-Seal II could cause crankcase air leaks.

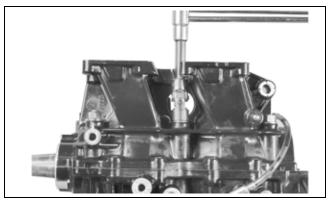
IMPORTANT: The use of *Locquic Primer* is NOT recommended. If primer is used, crankcase halves must be assembled and tightened within ten minutes after the *Gel-Seal II* has been applied.


Lower the crankcase into place. Make sure that upper oil seal and lower seal housing are seated in grooves.

Apply outboard lubricant to the main bearing studs. Install nuts and washers finger tight, no more than 60 in. lbs. (7 N·m).

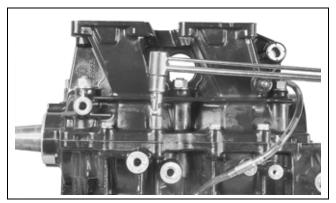
00227

When the crankcase is seated, install and firmly seat the crankcase taper pin.


002260

Tighten main bearing nuts **in stages** to a final torque of:

26 to 30 ft. lbs. (35 to 41 N·m).

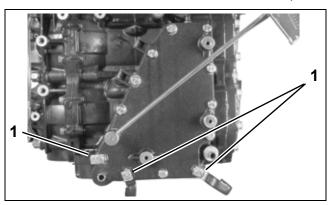

POWERHEAD ASSEMBLY

Start in the center and work outward in a spiral pattern.

002254

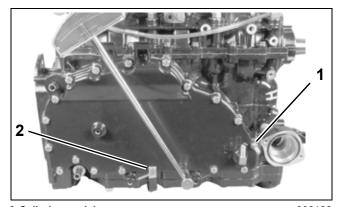
Apply *Nut Lock* to crankcase flange screws. Install screws and tighten to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

002259


Test that the crankshaft spins freely without binding.

IMPORTANT: After powerhead has been assembled, allow at least two hours for *Gel-Seal II* to cure before running outboard.

Apply *Gasket Sealing Compound* to both sides of a new water cover gasket. Place gasket and cover on cylinder block.


Apply *Nut Lock* to cover screws. Position J-clamps as shown. Tighten all screws to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

Note: 3-Cylinder models include a double-ended stud and use a lockwasher under the J-clamp.

2-Cylinder models
1. J-clamps

002242

3-Cylinder models1. Double-ended stud

002122

2. J-clamp

Shift Linkage Installation

Place the spring, guide, and ball of the shift detent assembly into the crankcase. Lubricate with *Tri-ple-Guard* grease.

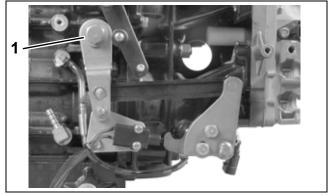
1. Shift detent assembly

002135


11

Lubricate shift linkage bosses at the base of the crankcase with *Triple-Guard* grease. Insert bushings into bosses.

Apply *Triple-Guard* grease to the shaft and detent of the shift lever assembly. Guide shaft through bushings in crankcase.


Install cotter pin and washer on the shaft (2-cylinder models).

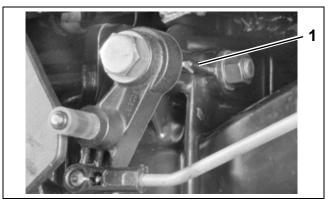
Install shift rod lever and tighten retaining screw to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

- Shift lever and shaft
- . Bushing
- Cotter pin and washer
- 4. Shift rod lever screw

Apply *Triple-Guard* grease to shoulder of shift arm screw and *Nut Lock* to threads. Install arm, screw, and washer and tighten screw to a torque of 120 to 144 in. lbs. (13.5 to 16 N·m).

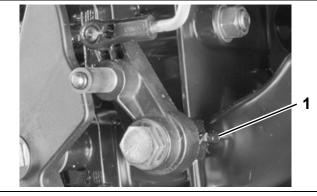
Shift lever screw

002250


002246

Throttle Linkage Installation

Apply *Nut Lock* to threads of throttle lever screw.

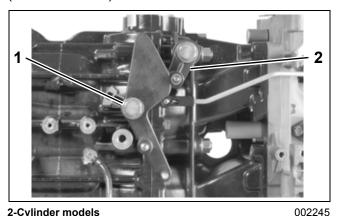

Insert spring into cavity of throttle return lever.

Install lever, screw, and washer on crankcase and hook spring on rib as shown. Tighten screw to a torque of 120 to 144 in. lbs. (13.5 to 16 N·m).

2-Cylinder models1. Throttle lever spring

002255

3-Cylinder models1. Throttle lever spring


002256

Apply *Nut Lock* to threads of throttle cam screw. Install cam, screw, and washer on cylinder block

POWERHEAD

POWERHEAD ASSEMBLY

and tighten screw to a torque of 120 to 144 in. lbs. (13.5 to 16 N·m).

2-Cylinder models

- Throttle lever screw
- Throttle return lever

2

3-Cylinder models

- Throttle lever screw
- Throttle return lever

IMPORTANT: Do not lubricate throttle levers or shoulder screws.

Final Powerhead Assembly

Install the reed plate and throttle body assemblies. Refer to Intake Manifold Service on p. 189.

Install oil recirculating hoses and check valves. Refer to OIL RECIRCULATION DIAGRAMS on p. 198, or **POWERHEAD VIEWS** on p. 259.

Install thermostat assembly. Refer to THERMO-STAT SERVICING on p. 220.

Install pressure valve assembly. Refer to PRES-SURE RELIEF VALVE SERVICING on p. 221.

Install shift linkage. Refer to Shift Linkage Installation on p. 250.

Install throttle linkage. Refer to Throttle Linkage Installation on p. 251.

Install fuel injectors and ignition coils. Refer to Fuel Injector Installation on p. 188.

IMPORTANT: All injectors must be installed in their original location. Improper injector installation can result in powerhead failure.

Install stator and flywheel. Refer to FLYWHEEL AND STATOR SERVICING on p. 154.

Install electrical harness, then install EMM. Refer to **EMM SERVICING** on p. 116.

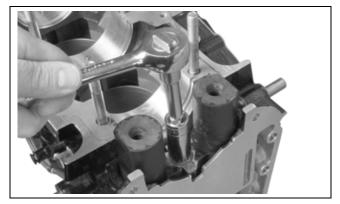
Install fuel pump assemblies, fuel manifolds, and filter. Refer to FUEL COMPONENT SERVICING on p. 183.

Install the oil tank and oil injection hoses. Refer to Oil Tank Assembly on p. 207.

Install the electric starter. Refer to Starter Starter Installation on p. 159.

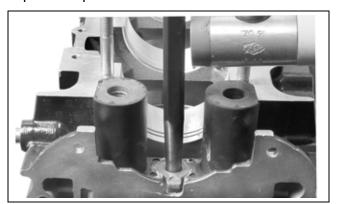
002257

WARNING

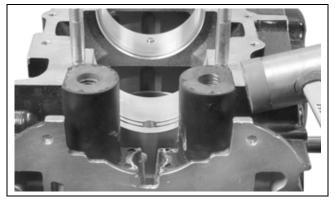

To prevent fire and explosion hazard, make sure all electrical and ignition wiring is routed and clamped in original positions.

11

UPPER MOUNT SERVICING (3-Cylinder)

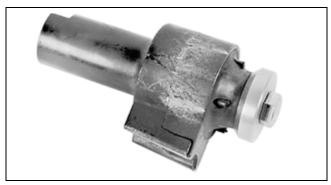

Removal

Remove mount retainer screw.


002069

Insert suitable punch in taper of mount retainer. Tap side of punch to loosen mount retainer.

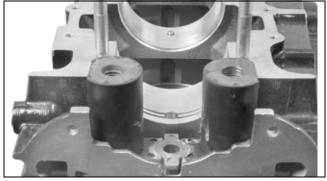
002130


Dislodge mount assemblies and remove.

002132

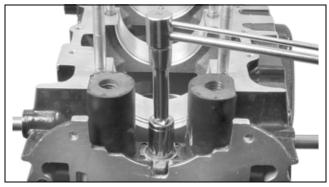
Inspect mounts and replace if necessary.

IMPORTANT: The motor mount, washer, and screw are serviced as an assembly. Do not disassemble.



39820

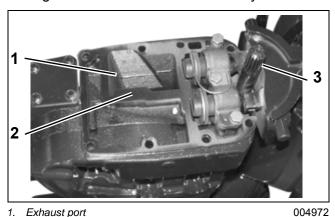
Installation


Place mount assemblies in position, with flats facing away from each other.

Apply *Moly Lube* to all sides of retainer and install between mounts.

002133

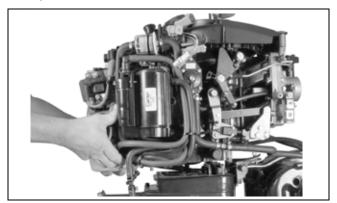
Install the retainer screw and tighten to a torque of 15 to 20 ft. lbs. (20 to 27 $N \cdot m$).



002134

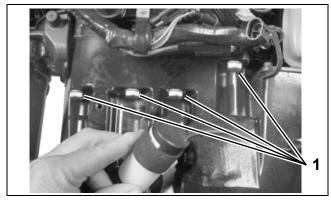
POWERHEAD INSTALLATION

Powerhead Mounting – 2-Cylinder **Models**


Apply Permatex No. 2 to both sides of a new base gasket around the exhaust port only. Install gasket on exhaust housing. To ensure proper sealing, mating surfaces must be clean and dry.

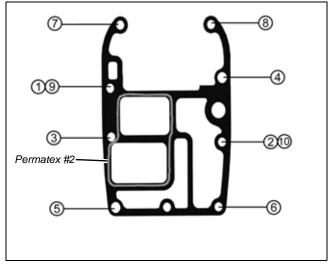
- Exhaust port
- Clean surface
- Moly Lube

Coat the driveshaft splines with *Moly Lube*. Do not apply lubricant to end of driveshaft.


Use Lifting Fixture, P/N 396748, and hoist to slowly lower powerhead onto exhaust housing. If necessary, rotate flywheel in a clockwise direction to align crankshaft and driveshaft splines.

002269

Apply Triple-Guard grease to the threads, and Gasket Sealing Compound to the shank of the powerhead screws.


Loosely install all powerhead screws before tightening:

Powerhead screws

004292

Tighten the eight powerhead screws to a torque of 18 to 20 ft. lbs. (24 to 27 N·m) in the sequence shown.

Large screw torque sequence, 1 - 10

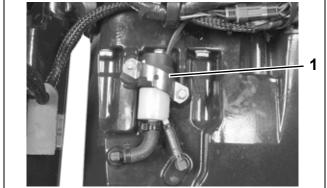
002175

IMPORTANT: Retighten powerhead mounting screws after outboard has been run at full operating temperature and allowed to cool.

11

006526m

Place the shift rod in the shift rod lever. Install the retaining pin and washer. Tighten pin to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).


1. Shift rod screw

002171

Check shift linkage adjustment. Refer to **Shift Linkage Adjustment** on p. 258.

IMPORTANT: Make sure the gearcase shifts completely into both forward and reverse and that propeller shaft spins freely in neutral.

Apply *Nut Lock* to threads of exhaust water valve screws and tighten to a torque of 60 to 84 in. lbs. (7 to 9.5 N.m).

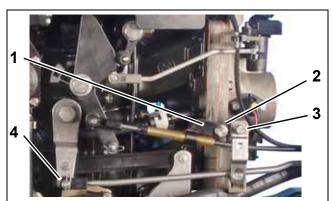
1. Exhaust water valve

004293

Connect cooling water hoses to exhaust housing.

Overboard indicator hose

Drain hose

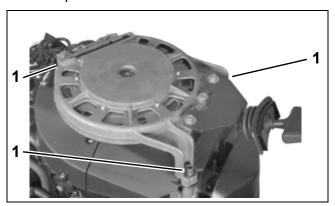

004298

Connect the power trim connectors and exhaust water valve connector (60, 65). Secure cables in clamps.

Install the lower engine covers. Refer to **LOWER COVER SERVICE** on p. 96.

ROPE START MODELS

Install throttle cable and tiller shift rod.

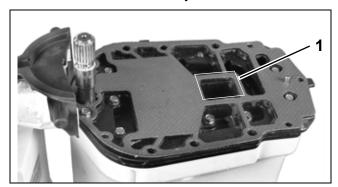

- . Cable anchor
- Anchor screw
- 3. Cable retainer
- 4. Shift rod retainer

Refer to **Throttle Cable Adjustment** on p. 314, or **Throttle Cable Adjustment** on p. 325.

POWERHEAD

POWERHEAD INSTALLATION

Install recoil starter ratchet and housing on outboard. Refer to **RECOIL STARTER INSTALLATION** on p. 405.



1. Starter housing screws (3)

002515

Powerhead Mounting – 3-Cylinder Models

Apply *Permatex No. 2* to both sides of a new base gasket around the exhaust port only. Install gasket on adapter. To ensure proper sealing, mating surfaces must be clean and dry.

1. Apply Permatex No. 2 here

002164

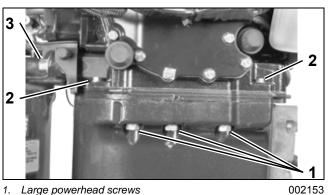
Coat the driveshaft splines with *Moly Lube*. Do not apply lubricant to end of driveshaft.

Use Lifting Fixture, P/N 396748, and hoist to slowly lower powerhead onto exhaust housing. Guide into position over alignment pin at rear of exhaust housing. If necessary, rotate flywheel in a

clockwise direction to align crankshaft and driveshaft splines.

1. Alignment pin

002162

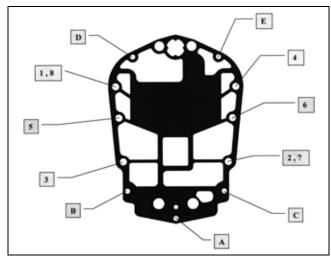

Apply *Triple-Guard* grease to the threads, and *Gasket Sealing Compound* to the shank of the powerhead screws.

Apply *Triple-Guard* grease to upper mount screw threads.

Loosely install all powerhead screws and upper mount screws before tightening.

- Tighten the six large powerhead screws to a torque of 18 to 20 ft. lbs. (24 to 27 N·m) in the sequence shown.
- Tighten the five small powerhead screws to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

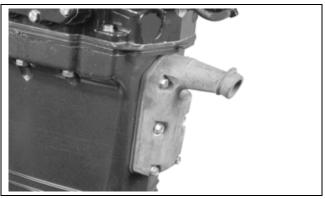
 Tighten the upper mount screws to a torque of 110 to 130 ft. lbs. (149 to 176 N·m). Make sure that screw heads are tight against steering arm.



- Large powerhead screws
- Small powerhead screws
- Upper mount screws

1. Rear small powerhead screw

002160



Large screw torque sequence, 1–8 Small screw torque sequence, A–E

002167

IMPORTANT: Retighten powerhead mounting screws after outboard has been run at full operating temperature and allowed to cool.

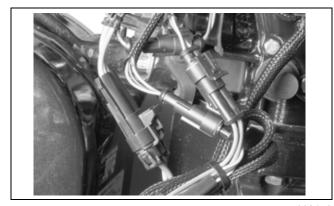
Apply Gasket Sealing Compound to exhaust relief muffler gasket and retaining screws. Install muffler and tighten screws to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

002163

Place the shift rod in the shift rod lever. Install the retaining pin and washer. Tighten pin to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

Shift rod screw

002013


Check shift linkage adjustment. Refer to Shift Linkage Installation on p. 250.

IMPORTANT: Make sure the gearcase shifts solidly into both forward and reverse and that propeller shaft spins freely in neutral.

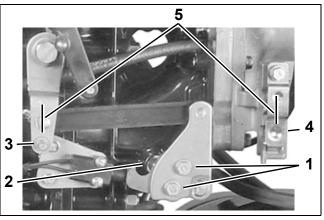
POWERHEAD

POWERHEAD INSTALLATION

Connect the power trim connectors.

002152

Install the lower engine covers. Refer to **LOWER COVER SERVICE** on p. 96.


Shift Linkage Adjustment

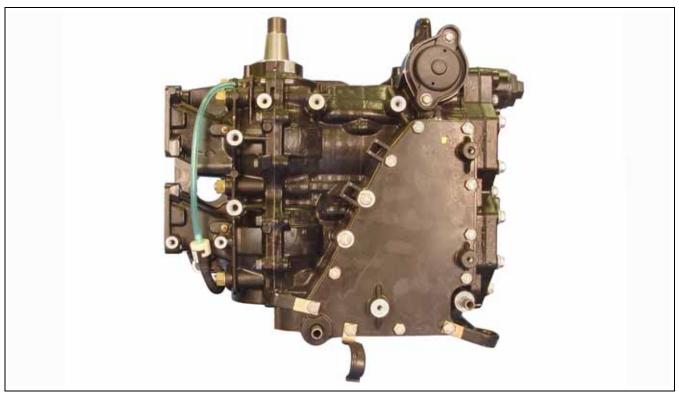
Adjust shift linkage as follows:

- · Loosen adjustment screws on shift lever.
- · Be sure that ball is centered in detent assembly.
- Adjust shift lever so that the screw hole in shift rod lever lines up with the hole in the gearcase shift rod when gearcase is in neutral.
- When correctly adjusted, the shift lever will be parallel with the vertical line of the outboard, and the distance between the shift lever pin and the center of the shift cable trunnion pocket should be approximately 7 in. (17.8 cm).

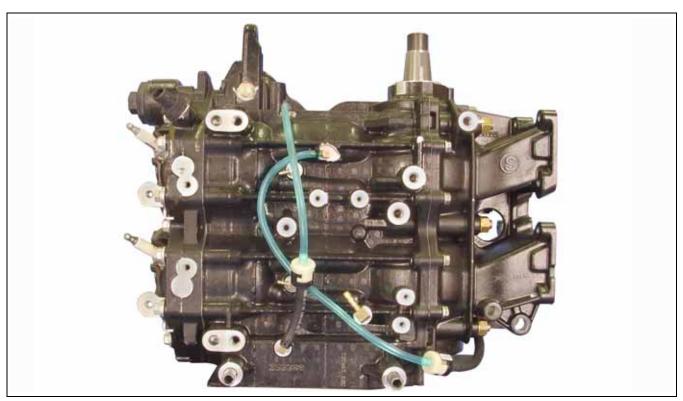
IMPORTANT: The shift rod height is the most critical of these adjustments and should not be moved during this procedure. Refer to **SHIFT ROD ADJUSTMENT** on p. 336, or **SHIFT ROD ADJUSTMENT** on p. 359..

 Tighten adjustment screws to 60 to 84 in. lbs. (7 to 9.5 N·m).

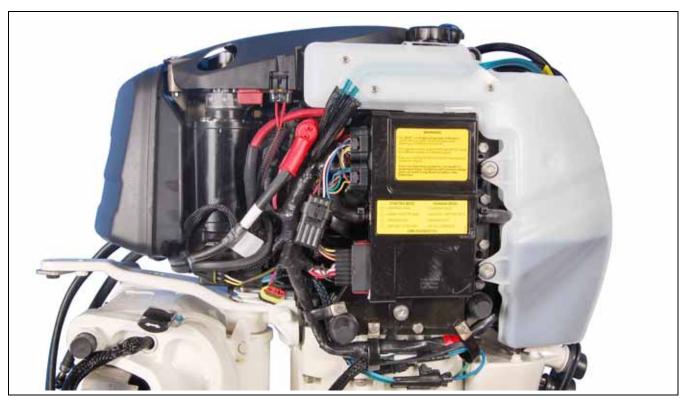
002125


- 1. Adjustment screws
- 2. Shift detent assembly
- 3. Shift lever pin
- 4. Trunnion pocket
- 5. 7 inch dimension

Pre-Service Adjustments


NOTICE After installing a new or rebuilt powerhead, perform the following procedures before returning outboard to service:

- Adjust timing pointer.
- Index all spark plugs. Refer to Spark Plug **Indexing** on p. 90.
- Use Evinrude Diagnostics software to start powerhead break-in oiling. Refer to Powerhead Break-In on p. 113.
- Use Evinrude Diagnostics software to set TPS calibration. Refer to TPS Calibration on p. 158.
- Use Evinrude Diagnostics software to make sure engine management software version and revision are current. Update as required.
- Prime fuel system.
- Prime oiling system. Refer to Oil Supply Priming on p. 65.
- Use Evinrude Diagnostics software to check engine timing. Refer to TIMING ADJUST-MENTS on p. 157.
- Run outboard and check for water, fuel, or oil leaks.
- Make sure engine reaches correct operating temperature and does not overheat.


2-Cylinder Port – Hose Routings

2-Cylinder Starboard – Hose Routings


2-Cylinder Port Dressed Powerhead

2-Cylinder Starboard Dressed Powerhead

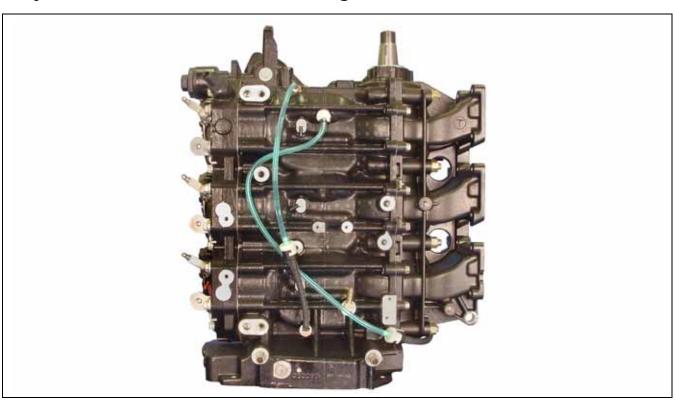

2-Cylinder Port Rope Start Models

2-Cylinder Starboard Rope Start Models

2-Cylinder Front

2-Cylinder Rear

2-Cylinder Top


2-Cylinder Top, Rope Start Models

3-Cylinder Port – Hose Routings

3-Cylinder Starboard – Hose Routings

3-Cylinder Port Dressed Powerhead

3-Cylinder Starboard Dressed Powerhead

3-Cylinder Front

3-Cylinder Rear

3-Cylinder Top

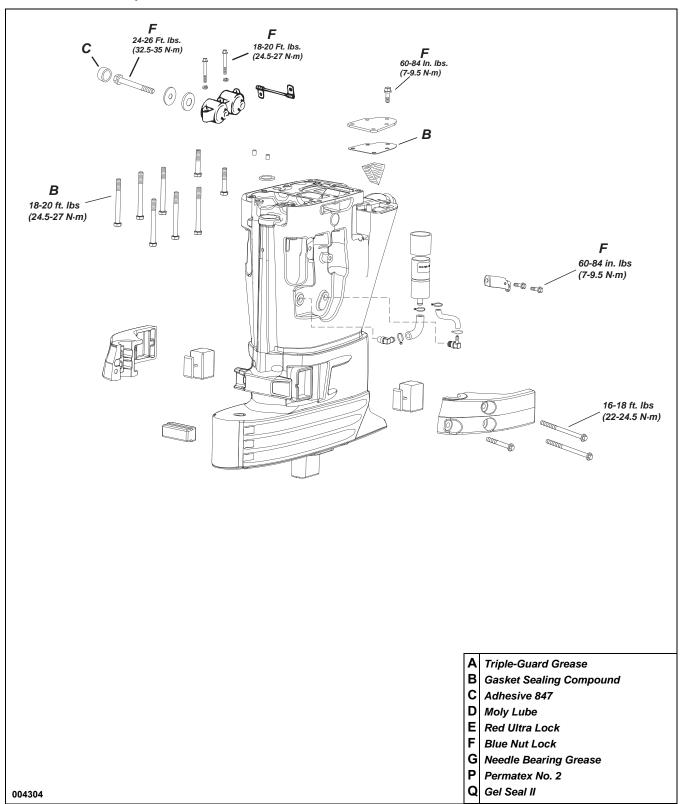
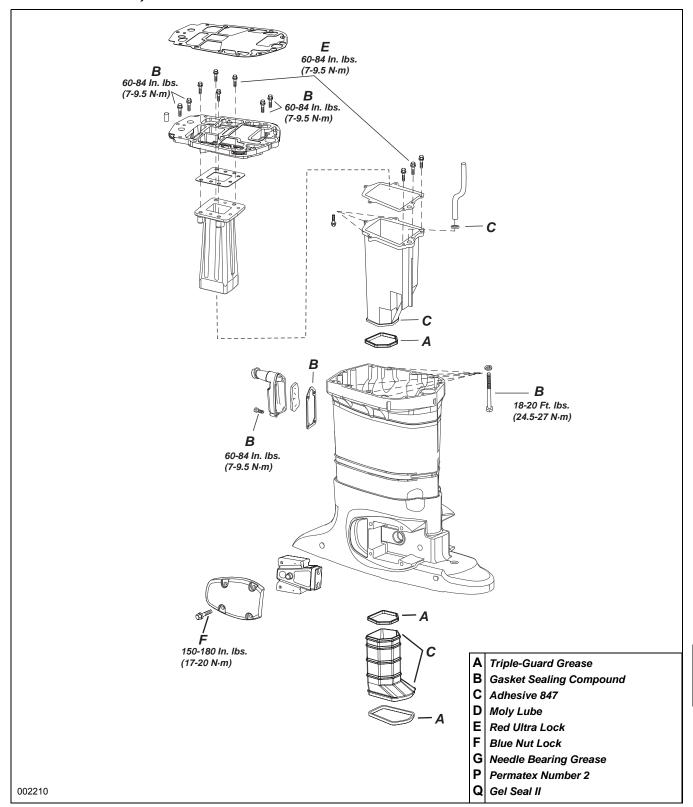
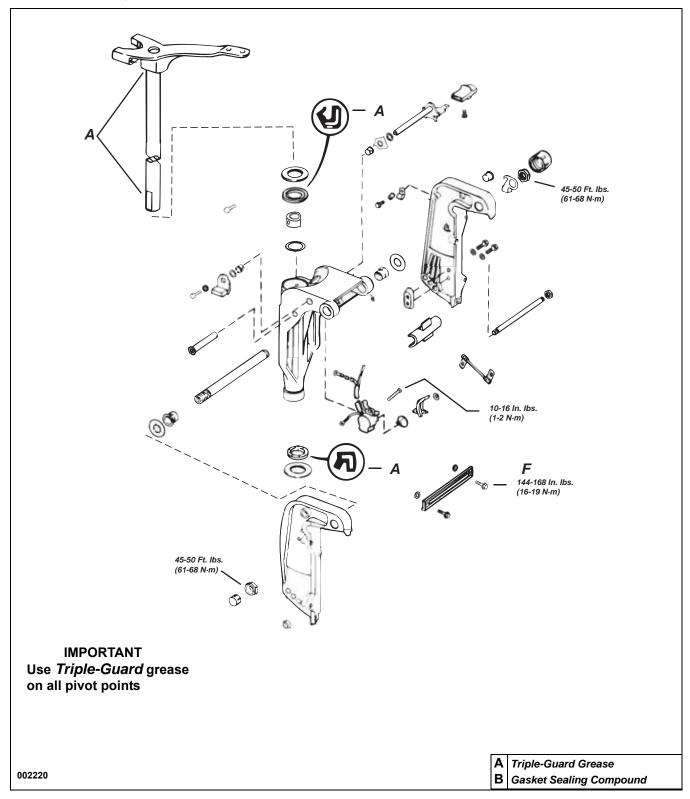
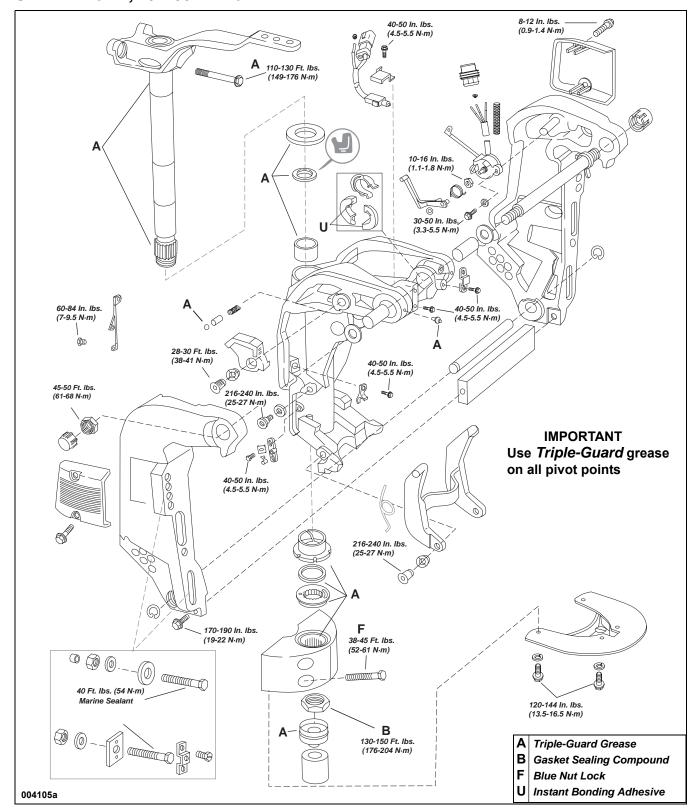

MIDSECTION

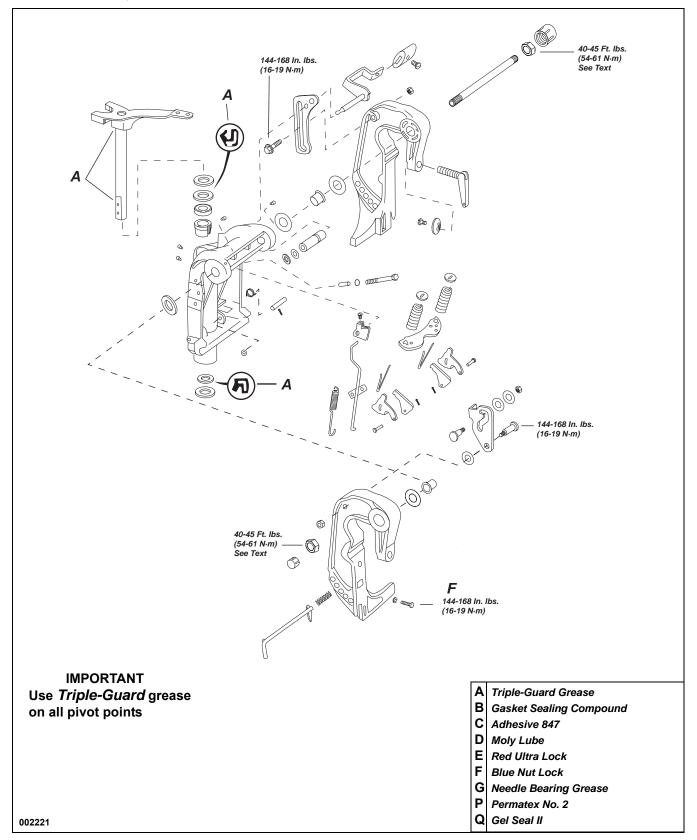
TABLE OF CONTENTS

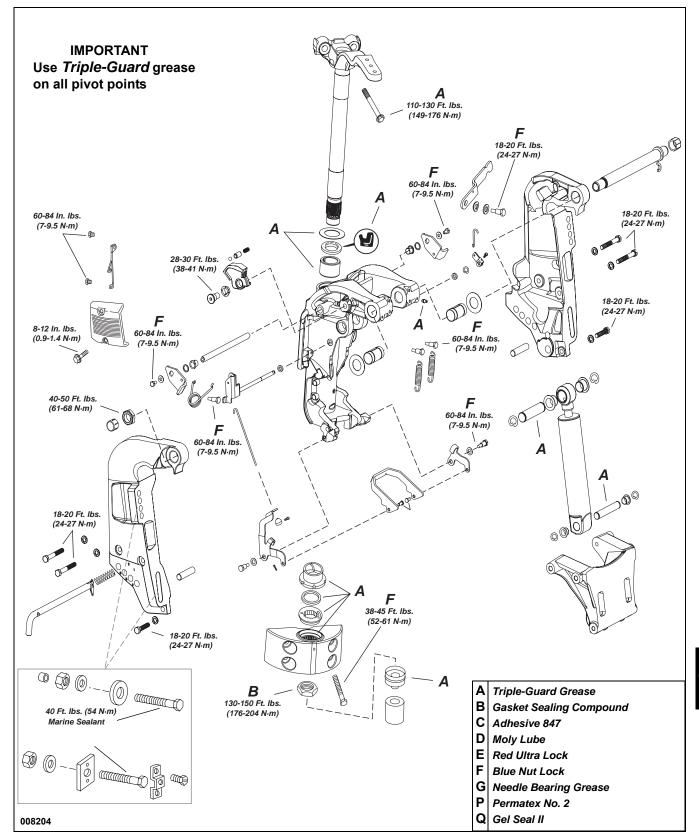

SERVICE CHARTS	
TILT TUBE, 75 – 90 HP	279
EXHAUST HOUSING, 40 – 65 HP	281
EXHAUST HOUSING REMOVAL	281
EXHAUST WATER VALVE	282
EXHAUST RELIEF MUFFLER	282
EXHAUST HOUSING INSTALLATION	283
EXHAUST HOUSING, 75 – 90 HP	
EXHAUST HOUSING REMOVAL	
LOWER MOUNT SERVICE	
EXHAUST HOUSING INSTALLATION	
EXHAUST HOUSING DISASSEMBLY	
CLEANING AND INSPECTION	
EXHAUST HOUSING ASSEMBLY	
STERN BRACKET, 40 – 60 HP POWER TILT	
STERN BRACKET DISASSEMBLY	
STERN BRACKET ASSEMBLY	
STERN BRACKET, 75 – 90 HP POWER TILT	
STERN BRACKET DISASSEMBLY	
STERN BRACKET ASSEMBLY	
STERN BRACKET, 40 – 60 HP MANUAL TILT	
CLAMP SCREW	
STERN BRACKET DISASSEMBLY	
STERN BRACKET ASSEMBLY	
TILT ASSIST CYLINDER	
SWIVEL BRACKET, 90 HP MANUAL TILT	
DISASSEMBLY	
ASSEMBLY	
TILLER HANDLE SERVICE – STANDARD	
REMOVAL	
DISASSEMBLY	-
ASSEMBLYINSTALLATION	
THROTTLE CABLE ADJUSTMENT	
TILLER HANDLE SERVICE – LONG HANDLE	
REMOVAL	
DISASSEMBLY	
ASSEMBLY	
INSTALLATION	
CONTROL CABLE INSTALLATION	
MIDSECTION AND TILLER ADJUSTMENTS	
STEERING FRICTION ADJUSTMENT	
THROTTLE FRICTION ADJUSTMENT	

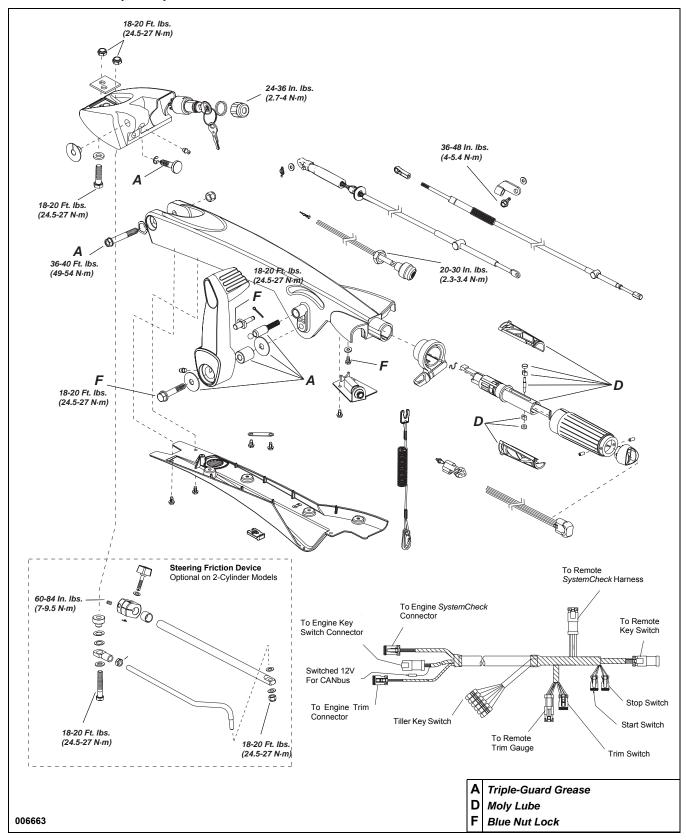
SERVICE CHARTS


EXHAUST HOUSING, 40 - 65 HP


EXHAUST HOUSING, 75 - 90 HP


STERN BRACKET, 40 - 60 HP POWER TILT


STERN BRACKET, 75 - 90 HP POWER TILT

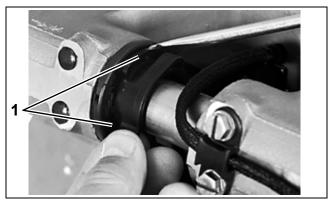

STERN BRACKET, 40 - 65 HP MANUAL TILT

STERN BRACKET, 90 HP MANUAL TILT

TILLER HANDLE (LONG)

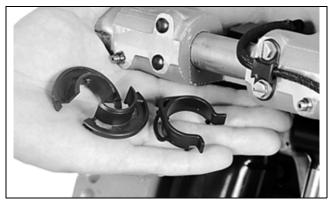
12

TILT TUBE, 75 – 90 HP


The tilt tube may be serviced without major disassembly of the outboard using Tilt Tube Service Kit, P/N 434523.

Removal

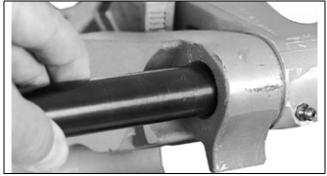
WARNING


Support the outboard with a suitable hoist.

Pull the locking tabs on the tilt limit cam loose from the collar.

1. Locking tabs

Remove the cam and collar from the tilt tube.


30748

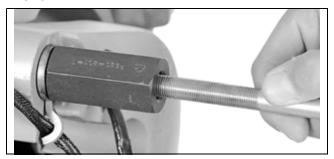
Remove the nut from the starboard side.

30747

Thread the spacer from Tilt Tube Service Kit, P/N 434523, onto the starboard end of the tilt tube.

30746

Remove steering cable wiper nut from tilt tube. Thread the adapter from Tilt Tube Service Kit, P/N 434523, onto the port end of the tilt tube.



30745

MIDSECTION

TILT TUBE, 75 - 90 HP

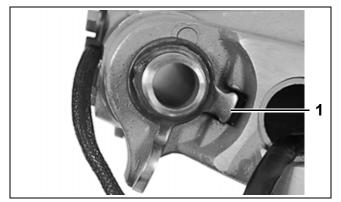
Thread Slide Hammer, P/N 432128, into the adapter until at least 2 in. (51 mm) of thread are engaged.

30744


Pull tilt tube from stern bracket with the slide hammer. When tilt tube clears the port stern bracket, remove tilt tube from the spacer.

Installation

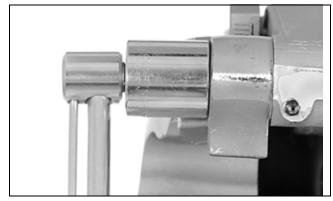
Thread starboard end of tilt tube into the spacer.


Thread the adapter onto port end of tilt tube.

Use a wood or leather mallet to tap the tilt tube into position.

30743

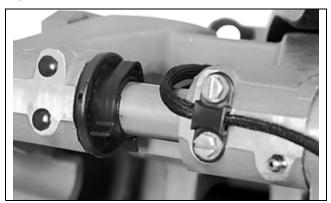
Make sure the lock tab is in correct position.


1. Lock tab 30

Install the starboard locknut.

▲ WARNING

Replace locknut if definite resistance is not felt.


Tighten starboard tilt tube nut to a torque of 45 to 50 ft. lbs. (61 to 68 N·m).

30741

Replace steering cable wiper nut on port end of tilt tube.

Apply one drop of instant bonding adhesive in receiving channels of tilt limit switch collar and install collar and tilt cam on tilt tube. Be sure locating tab on collar fits in hole on tilt tube.

30750

12

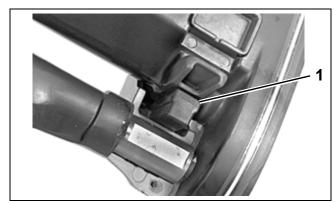
EXHAUST HOUSING, 40 – 65 HP

The exhaust housing contains no serviceable internal parts. The exhaust water valve and the exhaust relief muffler can both be serviced without removing the exhaust housing.

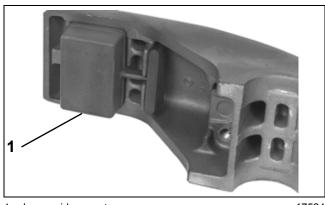
Exhaust Housing Removal

Before removing the exhaust housing:

- Remove the gearcase. Refer to Gearcase GEARCASE REMOVAL AND INSTALLA-TION on p. 332.
- Remove the powerhead. Refer to Powerhead POWERHEAD REMOVAL on p. 228.

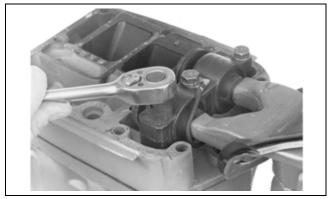

Remove the three lower mount cover screws.

17527

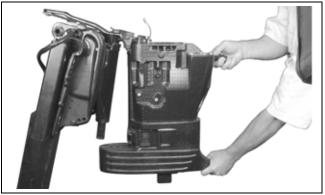

Separate lower mount covers from swivel bracket.

Check condition of the lower front mount and two lower side mounts.

1. Lower front mount


17526

1. Lower side mount


17524

Remove the three upper mount to exhaust housing screws. Be sure to support exhaust housing so it does not fall.

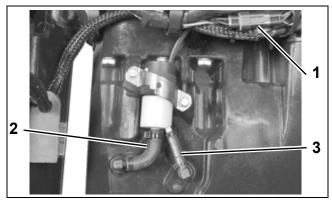
COA2943

Remove the exhaust housing.

Exhaust Housing

005069

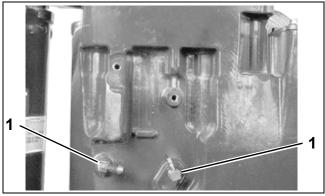
MIDSECTION


EXHAUST HOUSING, 40 - 65 HP

Exhaust Water Valve

Disconnect water valve electrical connector.

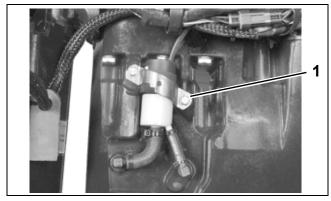
Remove screws and bracket holding valve to exhaust housing.


Remove tie straps and disconnect water valve hoses (3) from exhaust housing.

- 1. Electrical connector
- 2. Inlet hose
- 3. Outlet hose

004293

Check that all water passages are clear.

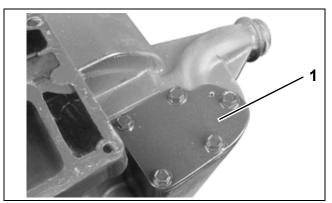

1. Fitting, water passage

004300

Install hoses to fittings on exhaust housing.

Place water valve and bracket in position.

Apply *Nut Lock* to screws, install and tighten 60 to 84 in. lbs. (7 to 9.5 N.m).



1. Exhaust water valve screws

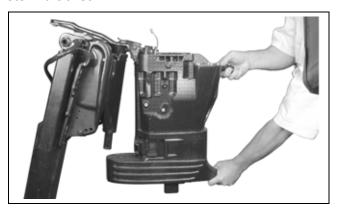
004293

Exhaust Relief Muffler

Remove exhaust relief muffler cover to inspect filter element. Clean or replace as needed.

1. Exhaust relief muffler cover

004301


Apply Gasket Sealing Compound to cover gasket and install cover.

Apply *Nut Lock* to cover screws and tighten to a torque of 60 to 84 in. lbs. (7 to 9.5 N.m).

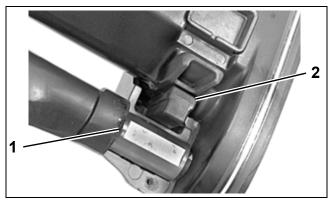
12

Exhaust Housing Installation

Bring the exhaust housing into position with the stern bracket.

Exhaust Housing

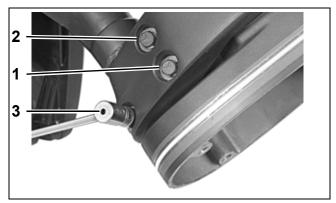
005069


Apply *Nut Lock* to threads of the upper mount screws. Install the screws and place ground lead under the center screw. Tighten screws to a torque of 18 to 20 ft. lbs. (24 to 27 N·m).

1. Ground lead

COA2943

Place lower thrust washer on the steering shaft and place the lower front mount into position.



1. Thrust washer

17526

2. Lower front mount

Install lower side mount covers. Install and tighten the screws in stages to a torque of 16 to 18 ft. lbs. (22 to 24 N·m) following sequence shown.

Torque sequence

17528

Install gearcase. Refer to Gearcase **GEARCASE REMOVAL AND INSTALLATION** on p. 332.

Install powerhead. Refer to Powerhead **POWER-HEAD INSTALLATION** on p. 254.

MIDSECTION

EXHAUST HOUSING, 75 - 90 HP

EXHAUST HOUSING, 75 – 90 HP

Exhaust Housing Removal

Before removing the exhaust housing:

- Remove the gearcase. Refer to **GEARCASE REMOVAL AND INSTALLATION** on p. 354.
- Remove the powerhead. Refer to POWER-HEAD REMOVAL on p. 228.

Remove and discard four lower mount screws.

20" Models 23036

25" Models 32590

Remove the exhaust housing.

001986

Lower Mount Service

Remove lower mount covers and inspect the lower mounts.

If replacement is necessary, lubricate mount with soapy water and carefully pry at both ends to remove.

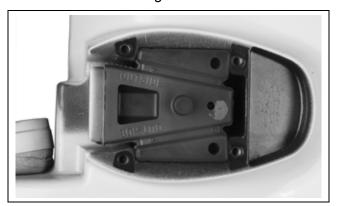
001971

stern bracket.

Exhaust Housing Installation

Install four new lower mount screws with lockpatch. Tighten screws to a torque of 38 to 45 ft. lbs. (51 to 61 N·m).

Bring the exhaust housing into position with the


20" Models 23036

Refer **GEARCASE** Install gearcase. to

Install powerhead. Refer to POWERHEAD

If removed, coat the lower mounts with soapy water and press into the exhaust housing with the "OUTSIDE" mark facing outward.

001970

Install the mount covers. Apply Nut Lock to screws, install washers and screws, and tighten to a torque of 150 to 180 in. lbs. (17 to 20 N·m).

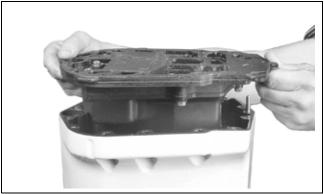
001972

INSTALLATION on p. 254.

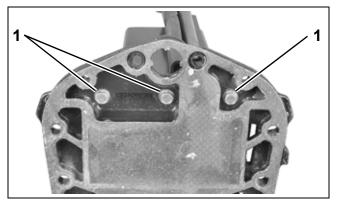
MIDSECTION

EXHAUST HOUSING, 75 - 90 HP

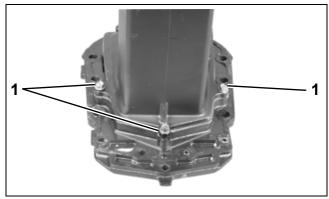
Exhaust Housing Disassembly


Remove the front and rear screws retaining the adapter/inner exhaust housing to the exhaust housing.

1. Adapter retaining screws


001981

Lift the adapter/inner exhaust housing out of the exhaust housing.


001980

Remove the three upper screws and three lower screws securing the inner exhaust housing to the adapter housing.

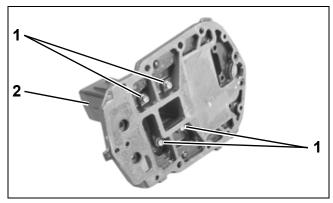
1. Upper inner exhaust housing screws


001975

1. Lower inner exhaust housing screws

001974

Remove the water tube from the inner exhaust housing. Discard water tube grommet.



1. Water tube grommet

001984

Remove the seal from the bottom flange of the inner exhaust housing.

Remove the four screws securing the exhaust megaphone to the adapter housing.

. Adapter to megaphone screws

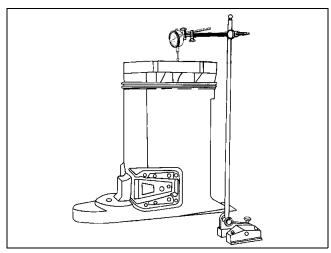
001976

Exhaust megaphone

Cleaning and Inspection

WARNING

Wear safety glasses to avoid personal injury, and set compressed air to less than 25 psi (172 kPa).

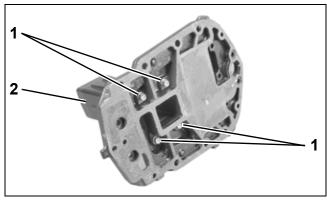

Clean all parts with parts cleaning solvent and dry with compressed air. All nut and screw threads coated with thread locking material must be thoroughly cleaned before assembly. When using a thread locking product, be sure to prime the threads with Locquic Primer.

Examine the upper and lower thrust mounts, and replace if deteriorated or damaged.

Before checking the exhaust housing for distortion, thoroughly clean the top and bottom mating surfaces and remove all sealer and corrosion.

Check the exhaust housing for distortion. Place the housing on a surface plate. Use a dial indicator to check flatness by measuring the run-out on the top edge of housing. The maximum allowable run-out is 0.009 in. (0.228 mm). If you do not have access to a dial indicator and surface plate, seek the services of a machine shop. DO NOT attempt to straighten a distorted housing; replace it.

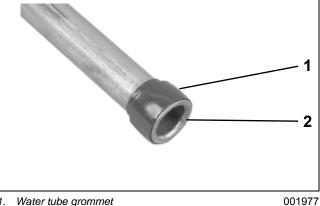
IMPORTANT: A distorted exhaust housing will cause the upper driveshaft splines to wear excessively and will damage the crankshaft splines.



DR2223

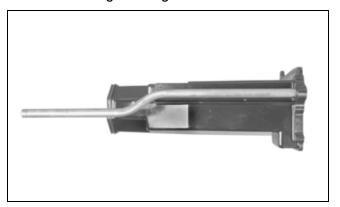
Inspect the water tube for obstructions or kinks, which may restrict water flow.

Exhaust Housing Assembly

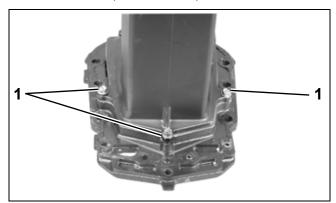

Place a new gasket between the exhaust megaphone and adapter housing. Apply Ultra Lock to the threads of the screws and tighten to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

- Adapter to megaphone screws
- 2. Exhaust megaphone

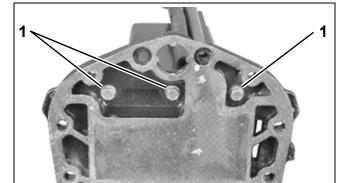
001976


Place a new grommet on the water tube and coat the outside edge with Adhesive 847.

- Water tube grommet
- Flared end of water tube


EXHAUST HOUSING, 75 - 90 HP

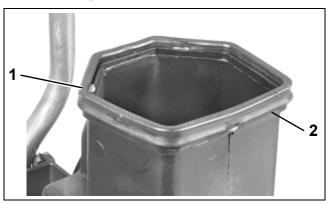
Install the water tube through the top of the inner exhaust housing and align as shown:



001982

Place a new gasket between the inner exhaust housing and the adapter housing. Apply *Ultra Lock* to the screws. Install the three lower screws and three upper screws and tighten to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

1. Lower inner exhaust housing screws



1. Upper inner exhaust housing screws

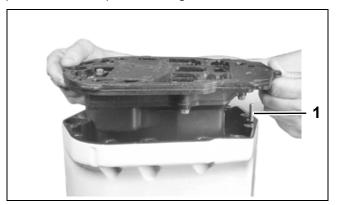
001975

001974

Apply *Adhesive 847* to the bottom flange of the inner exhaust housing. Install a new seal. Apply *Triple-Guard* grease to outer seal surface.

Seal
 Bottom flange

001973


Clean and degrease the adapter housing and outer exhaust housing mating surfaces with *Cleaning Solvent*. Apply *Gel-Seal II* sealant to the adapter flange of the exhaust housing.

001983

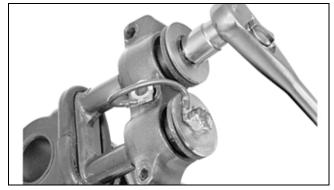
Place the adapter/inner exhaust housing into the exhaust housing. Guide the water tube through

the hole in the outer housing and the alignment pin into the adapter housing.

1. Alignment pin

001980

Apply Gasket Sealing Compound to threads of the four retaining screws and tighten to a torque of 60 to 84 in. lbs. (7 to $9.5~N\cdot m$).


1. Adapter retaining screws

001981

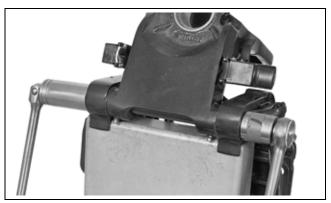
STERN BRACKET, 40 – 60 HP Power Tilt


Stern Bracket Disassembly

Remove the bumpers from the upper mount retaining screws. Remove the screws, upper mount, and ground lead from the bracket.

17505

Pull the steering arm out of the swivel bracket. Use an appropriate tool to pry the upper and lower seals from the swivel bracket.


COA2957

COA2958

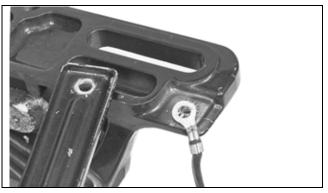
STERN BRACKET, 40 - 60 HP POWER TILT

To separate the swivel bracket from the stern bracket, remove one tilt tube nut.

17544

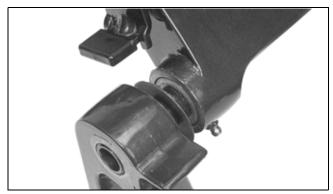
Remove the tie bar to separate the two stern brackets.

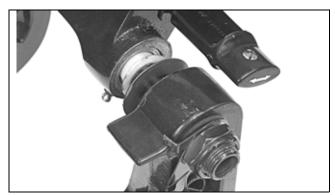
17541


Check the condition of the anode. Replace the anode if it has been reduced to two-thirds its original size.

17551

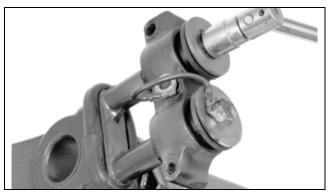
Stern Bracket Assembly


Assemble the tie bar to the stern brackets. Place the ground lead and starwasher between the port stern bracket and tie bar.


17540

Lubricate the swivel bracket bushings with *Triple-Guard* grease. Place the bushings in the swivel bracket.

Position the swivel bracket between the stern brackets. Place a thrust washer between each of the stern brackets and the swivel bracket.


17553

17552

Install the tilt tube. Tighten the tilt tube nuts 40 to 45 ft. lbs. (54 to 61 N·m), then back off 1/8 to 1/4 turn.

Apply *Nut Lock* to threads of the upper mount to steering arm screws. Install the mount and tighten the screws 24 to 26 ft. lbs. (32.5 to 35 N·m). Make sure to place the ground lead under the starboard screw.

17506

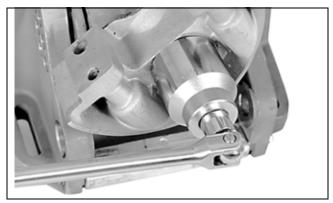
Apply a liberal amount of *Adhesive 847* to heads of the upper mount screws.

17507

Place the bumpers on the upper mount screws.

17509

STERN BRACKET, 75 – 90 HP Power Tilt


Stern Bracket Removal

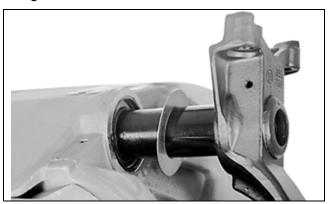
Before servicing the stern bracket:

- Remove gearcase. Refer to GEARCASE REMOVAL AND INSTALLATION on p. 354.
- Remove powerhead. Refer to POWERHEAD REMOVAL on p. 228.
- Remove exhaust housing. Refer to **Exhaust Housing Removal** on p. 284.
- Remove power trim/tilt unit. Refer to TRIM AND TILT SERVICE on p. 388.

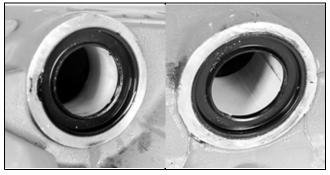
Stern Bracket Disassembly

Remove and discard steering shaft locknut.

30738

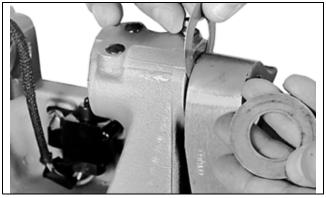

Remove the lower mount bracket and keeper.

Lower mount bracket - 20" Models


STERN BRACKET, 75 - 90 HP POWER TILT

Remove the steering shaft and thrust washer. It may be necessary to tap the steering shaft out using a wood dowel and mallet.

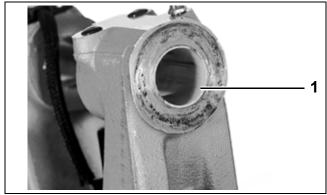
30735


Pry out upper and lower steering shaft seals and discard. Remove the upper and lower steering shaft bushings.

30765 / 30764

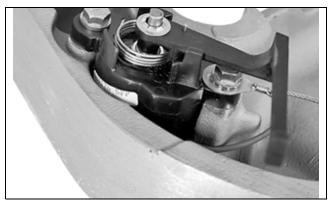
Remove the tilt tube. Refer to **TILT TUBE**, **75 – 90 HP** on p. 279.

Remove the two tilt tube washers.

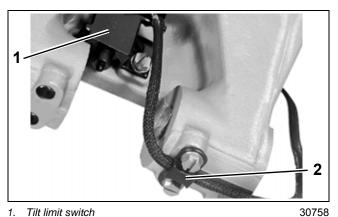

30763

Remove the anode.

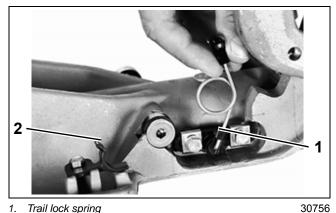
Anode 30762


Remove the swivel bracket. Inspect and, if necessary, replace the tilt tube bushings.

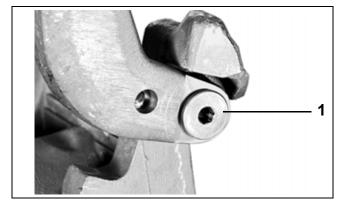
1. Tilt tube bushing


30761

Remove the trim sender unit from the port stern bracket and pull its wires through the braided tube.

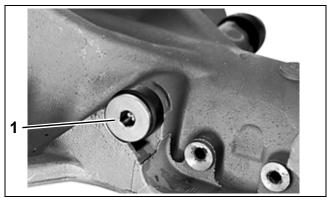

30760

Remove the tilt limit switch and retainer from the swivel bracket.


- 1. Tilt limit switch
- 2. Retainer

Disconnect the trail lock spring and remove it from the swivel bracket. Remove trail arm retainer.

- Trail lock spring
- Trail arm retainer


Remove the trail lock arm and bushings from the swivel bracket.

1. Trail lock bushing

30755

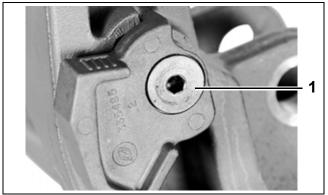
Remove the two trim rod rollers from the swivel bracket.

Trim rod roller

30754

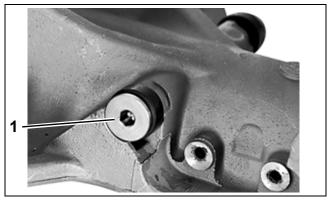
Remove the tilt support and bushing from the swivel bracket and inspect the detent roller and spring.

1. Tilt support bushing


Stern Bracket Assembly

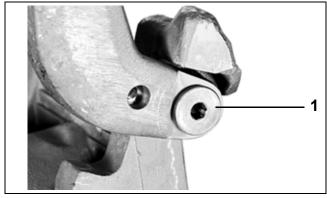
IMPORTANT: Before proceeding, make sure all components have been thoroughly cleaned. Replace any seals that have been removed. Inspect all thrust washers and bushings for evidence of deterioration.

Install the detent roller and spring and the tilt support with bushing in the swivel bracket. Tighten bushing to a torque of 28 to 30 ft. lbs. (38 to 41 $N \cdot m$).


30752

. Tilt support bushing

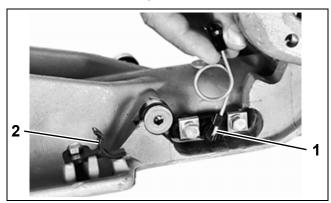
30753


Install the two trim rod rollers on the swivel bracket. Tighten to a torque of 216 to 240 in. lbs. $(25 \text{ to } 27 \text{ N} \cdot \text{m})$.

1. Trim rod roller

30754

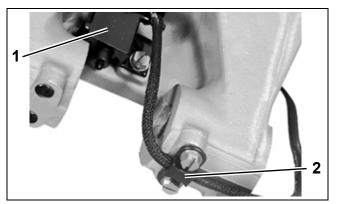
Install the trail lock and bushings in the swivel bracket. Tighten to a torque of 216 to 240 in. lbs. (25 to 27 N·m).



1. Trail lock bushing

30755

30756


Install the trail lock spring in the swivel bracket and connect the spring to the trail lock.

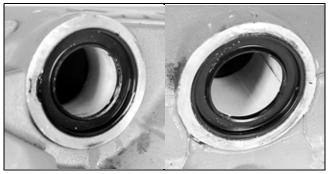
Trail lock spring
 Trail arm retainer

12

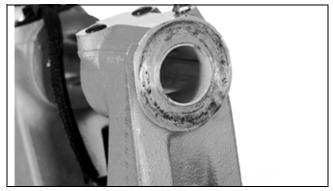
Install the tilt limit switch and retainer on the swivel bracket. Tighten screws to a torque of 40 to 50 in. lbs. (4.5 to 5.5 N·m).

- 1. Tilt limit switch
- 2. Retainer

30758


Route the trim sender wires through the braided tube, and install the sender unit in the port stern bracket.

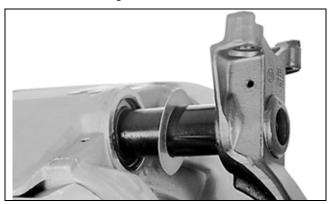
30760


Install the upper and lower steering shaft bushings and new seals in the swivel bracket. Both seal lips face out.

 Coat the outside surfaces of seals with Gasket Sealing Compound. Coat the bushings and seal lips with Triple-Guard grease.

30765 / 30764

Coat tilt tube bushings with *Triple-Guard* grease and, if removed, install them in the swivel bracket.



30761

Place the swivel bracket between the stern brackets and install the anode.

Install the tilt tube and tilt limit cam. Refer to **TILT TUBE**, **75 – 90 HP** on p. 279.


Install the steering shaft and thrust washer.

30735

STERN BRACKET, 40 - 60 HP MANUAL TILT

Install the steering shaft keeper. Apply *Locquic Primer* and *Nut Lock* to the splines of the steering shaft and lower mount bracket.

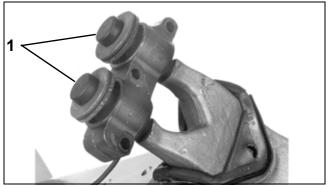
30736

Install the lower mount bracket and a new locking nut with its unstaked side facing the mount bracket. Align the bracket with the steering arm and tighten the nut to a torque of 130 to 150 ft. lbs. $(176 \text{ to } 204 \text{ N} \cdot \text{m})$.

30767

Fill the swivel bracket with *Triple-Guard* grease through the grease fitting on the bracket's port side. Lubricate the tilt tube, swivel bracket, and stern brackets through the two forward grease fittings.

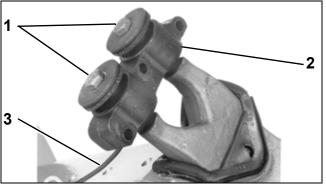
Install the exhaust housing. Refer to **Exhaust Housing Installation** on p. 285.


STERN BRACKET, 40 – 60 HP Manual Tilt

Clamp Screw

Inspect clamp screw assemblies). Replace swivel plate and retainer if bent or loose. To install a new swivel plate, remove screw and old plate. Apply *Locquic Primer* to the threads of the screw and allow it to dry four to five minutes. Then apply *Ultra Lock* to threads. Install a new swivel plate with screw and tighten securely.

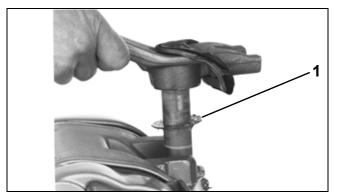
Stern Bracket Disassembly


Remove bumpers from the upper mount retaining screws.

1. Bumpers

COA2949

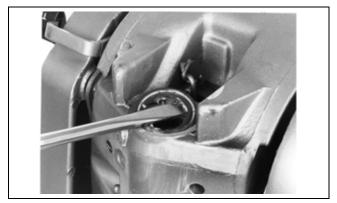
Remove screws, upper mount, and ground lead from the bracket.


1. Screws

COA2950

2. Upper mount

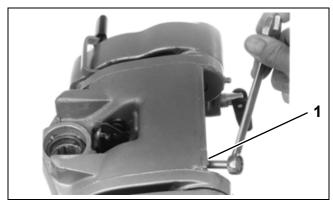
3. Ground lead


Slide the pivot shaft and upper thrust washer out of the swivel bracket.

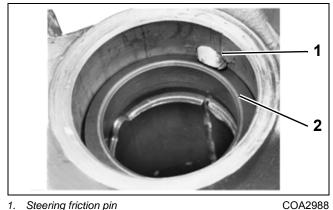
1. Upper thrust washer

COA2956

Use an appropriate tool to pry the upper and lower seals from the swivel bracket.

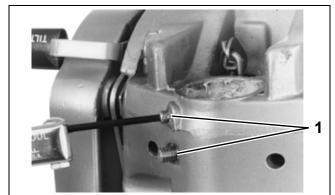


COA2957


COA2958

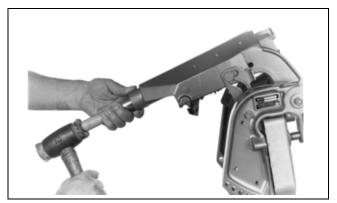
Loosen the steering friction screw while pushing outward on the steering friction pin. When the pin is flush with the inside surface of the casting, remove the steering friction thrust ring.

1. Steering friction screw

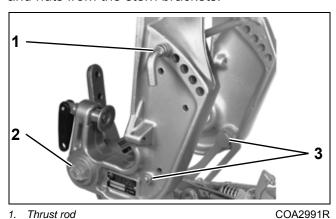

COA2959

Steering friction pin Steering friction thrust ring

Tighten the steering friction screw until the steering friction pin can be removed. Then, remove the steering friction screw.


Remove the two setscrews from the swivel bracket.

Setscrews COA2961

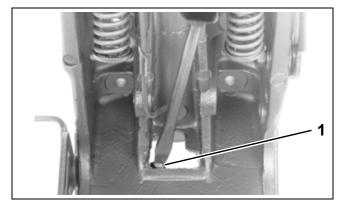

STERN BRACKET, 40 - 60 HP MANUAL TILT

Drive the steering friction bushing up and out of the swivel bracket.

COA2974

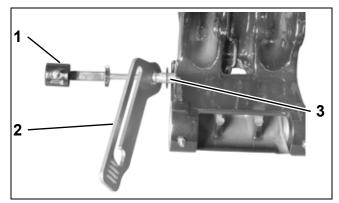
Remove the thrust rod from the stern brackets. Remove one tilt tube nut, and remove tilt tube from the stern brackets and swivel bracket. Remove the port and starboard stop link screws and nuts from the stern brackets.

- Thrust rod
- Tilt tube nut
- Stop link screw and nut

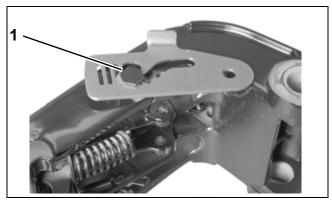

Remove the two stern bracket flange screws and separate the stern brackets from the swivel bracket.

1. Flange screws

COA2992

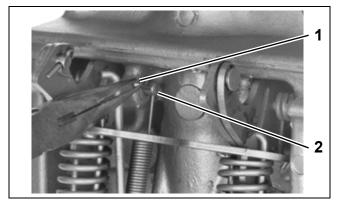

Place the tilt/run lever in the RUN position. Loosen the bellcrank setscrew.

1. Bellcrank setscrew


COA2976

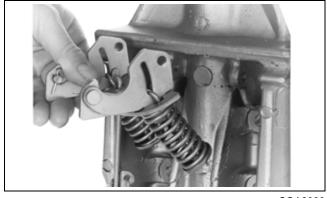
Remove the tilt/run lever, port stop link, and bushing from the swivel bracket.

- Tilt/run lever
- Port stop link
- Bushing .


Remove the starboard stop link retaining screw and nut from the swivel bracket.

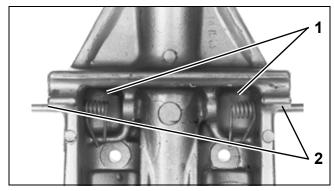
1. Starboard stop link screw

002205


Remove the cotter pins from both reverse lock pins. Remove the reverse lock pins and springs.

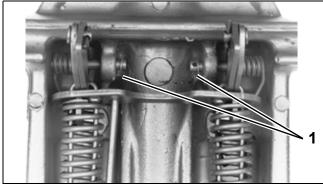
- Cotter pin
- 2. Reverse lock pin

COA2979

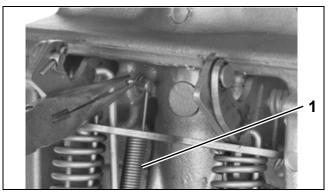

Remove the reverse lock assembly from the swivel bracket.

COA2980

Stern Bracket Assembly


Place the reverse lock springs in the swivel bracket. Insert the reverse lock pins in the swivel bracket and part way through the reverse lock springs. Place the reverse lock assembly between the springs. Push the pins through the springs and the reverse lock assembly.

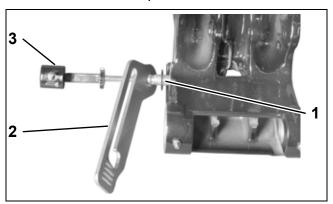
- 1. Reverse lock springs
- Reverse lock pins


COA2981

Install the washers on the reverse lock pins. Install the link spring on the port pin. Install the two cotter pins in the reverse lock pins.

1. Washers

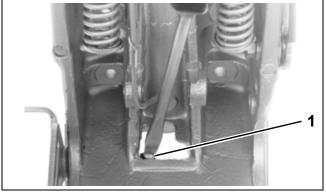
COA2982



Link spring

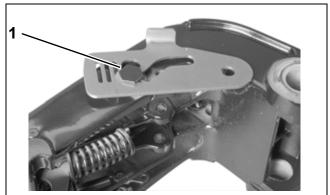
COA2979

STERN BRACKET, 40 - 60 HP MANUAL TILT


Install the bushing, the port stop link, and the tilt/run lever in the swivel bracket. The tilt/run lever should be in the RUN position.

- 1. Tilt/run lever
- 2. Port stop link
- 3. Bushing

002204


Install the wave washer and the bellcrank on the tilt/run shaft. Tighten the setscrew.

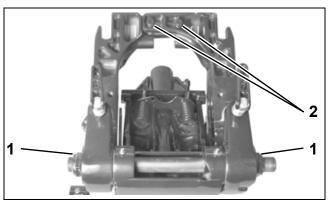
1. Bellcrank setscrew

COA2976

Install the starboard stop link on the swivel bracket. Install and tighten the screw and the nut to a torque of 144 to 168 in. lbs. (16 to 19 N·m).

1. Starboard stop link screw

002205

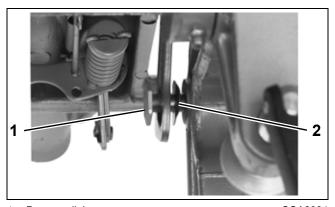

Place the swivel bracket between the stern brackets

Install the tilt tube through the following parts and install the tilt tube nuts loosely:

- Starboard stern bracket
- Thrust washer
- Bushina
- Swivel bracket
- Bushing
- Thrust washer
- · Port stern bracket

Apply *Nut Lock* to threads of the two flange screws. Install the two screws through the starboard stern bracket flange into the port stern bracket flange. Tighten the screws to a torque of 144 to 168 in. lbs. (16 to 19 N·m).

Tighten the tilt tube nuts to a torque of 45 to 50 ft. lbs. (61 to 68 $N \cdot m$).


Tilt tube nuts
 Flange screws

002206

Install the thrust rod in the stern brackets.

Install the larger shoulder screw through the port stop link, wave washer, and port stern bracket.

Install and tighten the nut to a torque of 144 to 168 in. lbs. (16 to 19 N·m).

- 1. Port stop link screw
- Wave washer

COA2984

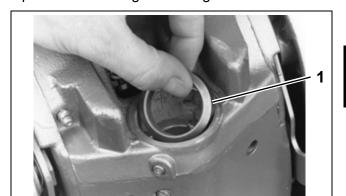
Install the smaller shoulder screw through the starboard stop link and stern bracket. Install and tighten the nut to a torque of 144 to 168 in. lbs. (16 to 19 N·m).

Apply *Ultra Lock* to threads of large setscrews. Install the screws in the swivel bracket so that one thread remains outside the casting.

Setscrews

Place the steering friction bushing in the swivel bracket with groove in line with the setscrews.

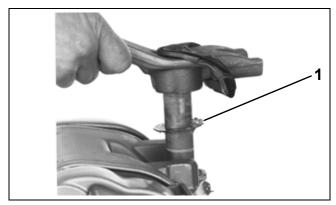
COA2986


Apply *Triple-Guard* grease to the steering friction pin. Install the pin in the swivel bracket flush with inside surface. The pin should point up.

1. Steering friction pin

COA2988

Install the steering friction thrust ring, bevel side up, in the swivel bracket. Thread the steering friction screw in the swivel bracket. Turn the screw until the steering friction pin makes contact with top of the thrust ring. Do not tighten the screw.


Steering friction thrust ring

COA2987

STERN BRACKET, 40 - 60 HP MANUAL TILT

Install new upper and lower seals in the swivel bracket with lips of seals facing away from the bracket.

Slide the upper thrust washer on the pivot shaft. Slide the pivot shaft through the swivel bracket.

Upper thrust washer

COA2956

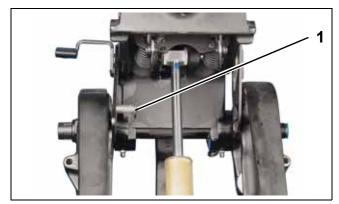
COA2950

Lubricate the swivel bracket through the four lubrication fittings with Triple-Guard grease.

Apply Nut Lock to threads of the upper mount to steering arm screws. Position the upper rubber mount, the upper mount washers, and the retaining washers on the steering arm with the word "UP" on the mount facing up. Be sure to place the ground lead between the mount (starboard side) and the steering arm. Install and tighten the mount retaining screws to a torque of 24 to 26 ft. lbs. (32.5 to 35 N·m).

- Upper mount
- Upper mount washers
- Retaining washers
- Ground lead
- Retaining screws

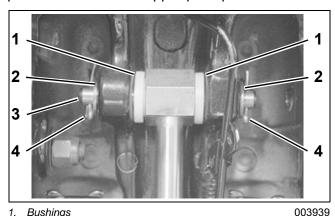
Place the mount screw bumpers on the upper mount screws.


Tilt Assist Cylinder

The tilt assist cylinder can be replaced without disassembly of the stern brackets.

WARNING

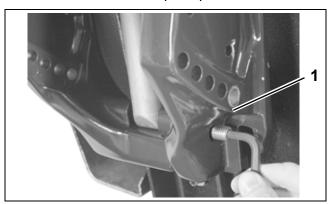
Support the outboard with a suitable hoist.


Remove port stop link screw. Push port stop link down to clear upper pivot pin access hole.

1. Stop link screw

006651

Remove both cotter pins and washers. Use appropriate tool to remove upper pivot pin.



- **Bushinas**
- Washers 2.
- Pivot pin
- Cotter pins

The starboard stern bracket includes an access hole for the lower tilt pin.

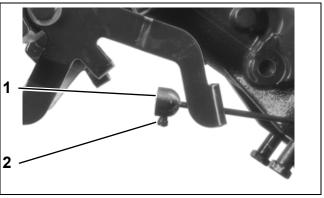
12

Remove set screw from starboard stern bracket lower pivot pin access hole and use an appropriate tool to remove lower pivot pin.

1. Lower pivot pin access hole

004260

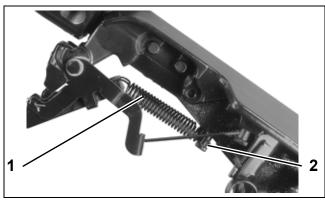
If lower pivot cannot be removed because of corrosion or damage, stern brackets may need to be disassembled.


003940

Assembly is the reverse of disassembly. Install **new** cotter pins in upper pivot pin. Install a **new** set screw in starboard stern bracket lower pivot pin access hole and tighten securely.

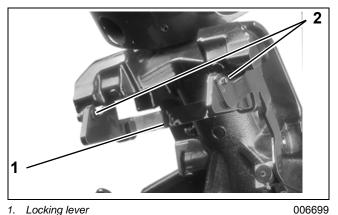
SWIVEL BRACKET, 90 HP Manual Tilt

Disassembly

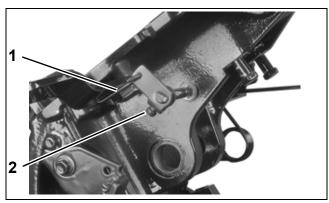

Loosen set screw and remove reverse lock release collar.

- 1. Reverse lock release collar
- Set screw

006697

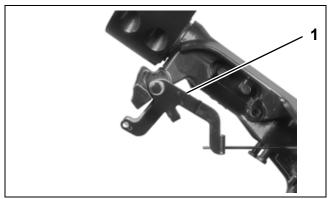

Remove reverse lock springs from locking lever and reverse lock spring screws.

- 1. Reverse lock springs
- 2. Reverse lock spring screws


SWIVEL BRACKET, 90 HP MANUAL TILT

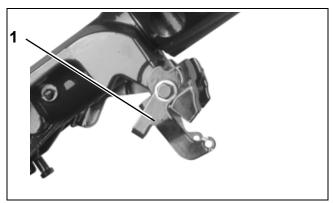
Remove cotter pins, pins and locking lever.

Locking lever Pins 1. 2.

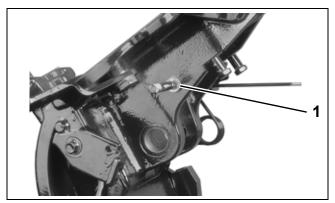

Loosen bellcrank set screw, remove bellcrank and handle link rod.

- 1. Handle link rod
- 2. Bellcrank setscrew

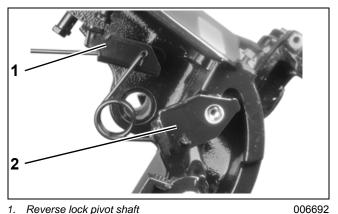
006694


Remove starboard reverse lock link.

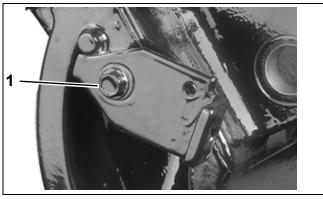
1. Starboard reverse lock link


006696

Remove port reverse lock link.

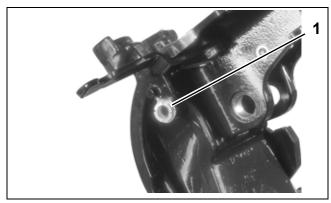

1. Port reverse lock link

Remove retaining ring and bellcrank shaft spacer from reverse lock pivot shaft.


1. Retaining ring 006693

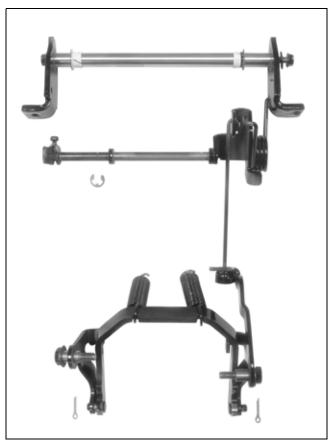
Remove screw from trail lock lever. Remove trail lock lever and reverse lock pivot shaft from swivel bracket.

- Reverse lock pivot shaft
- Trail lock lever


Remove port trail lock lever and trail lock shaft as an assembly.

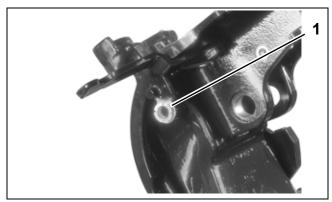
Port trail lock lever and shaft

006704


Remove port and starboard trail lock shaft bushings from swivel bracket.

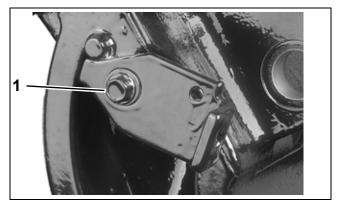
Trail lock shaft bushings

Assembly


Reverse Lock and Trail Lock Reference

1. Component reference view 2

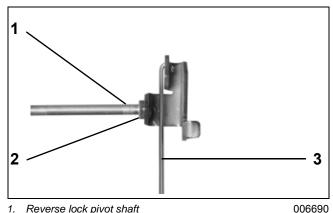
006686


Place port and starboard trail lock shaft bushings in the swivel bracket.

1. Trail lock shaft bushings (port side shown)

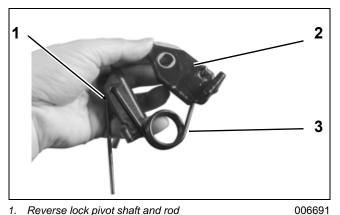
006687

Apply blue Nut Lock to screw and assemble port trail lock lever on trail lock shaft with screw, washer and nylon washer. Install in swivel bracket from port side. DO NOT tighten screw at this time.

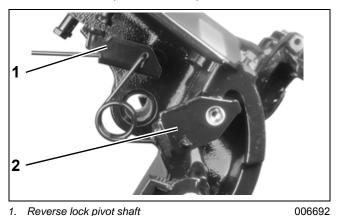


1. Port trail lock lever and shaft

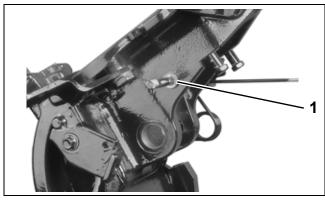
006704


Refer to Reverse Lock and Trail Lock Reference on p. 306 for correct orientation of reverse lock and trail lock components.

Assemble reverse lock pivot shaft, reverse lock lever rod and bellcrank shaft spacer as shown.

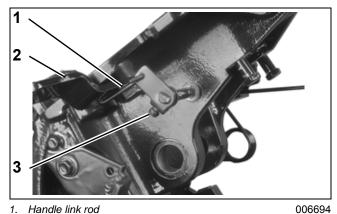

- Reverse lock pivot shaft
- Bellcrank shaft spacer
- Reverse lock lever rod

Assemble starboard trail lock lever and trail lock spring to reverse lock pivot shaft.


- Reverse lock pivot shaft and rod
- Trail lock lever 2.
- Trail lock spring

Install nylon washer to trail lock shaft and install above components to swivel bracket. Install trail lock washer, apply blue Nut Lock to screw and install screw. Tighten both screws to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

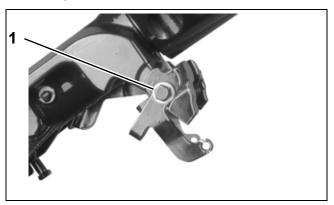
- Reverse lock pivot shaft
- Trail lock lever


Install remaining bellcrank shaft spacer on reverse lock pivot shaft, then install retaining ring.

Retaining ring

006693

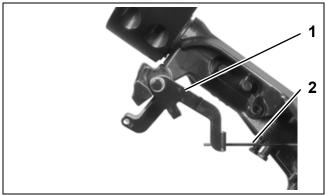
Install the rod handle link to reverse lock lever and bellcrank. Install bellcrank on reverse lock pivot shaft. Tighten the setscrew.



- Handle link rod
- 2. Reverse lock lever
- Bellcrank setscrew

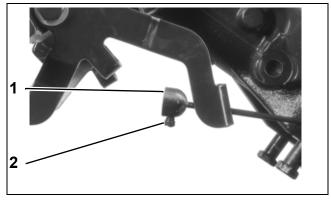
Install the port reverse lock link on the swivel bracket. Install washer screw. Apply blue Nut Lock

SWIVEL BRACKET, 90 HP MANUAL TILT


Tighten screw to a torque of 60 to 84 in. lbs. (7 to 9.54 N·m).

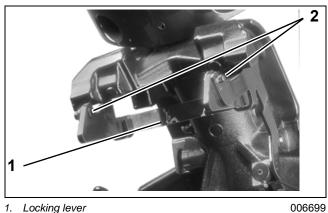
Port reverse lock link

006695

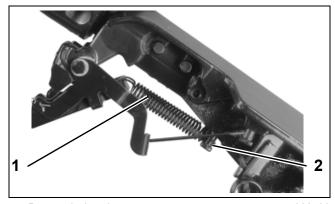

Place reverse lock lever rod through hole at top of starboard reverse lock lever. Install the starboard reverse lock link on the swivel bracket. Apply blue Nut Lock to screw threads and install washer and screw. Tighten screw to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

- Starboard reverse lock link
- Reverse lock lever rod

006696


Install reverse lock release collar and tighten set

- Reverse lock release collar
- 2. Set screw

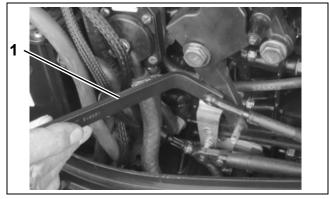

006697

Install locking lever, pins and new cotter pins.

- Locking lever
- Pins

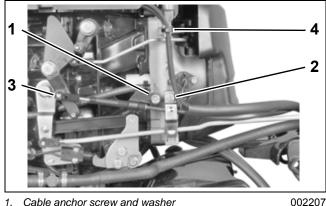
Install reverse lock springs on locking lever and reverse lock spring screws.

- Reverse lock springs
- 2. Reverse lock spring screws


TILLER HANDLE SERVICE – Standard

Removal

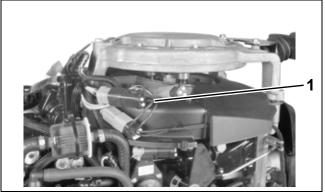
WARNING


To avoid accidental starting of engine while servicing, twist and remove all spark plug leads.

Use Ball Socket Remover tool, P/N 342226, to unsnap the throttle cable clip from the throttle lever.

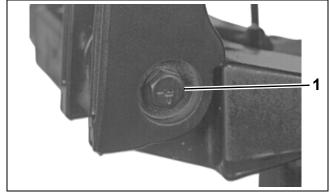
1. Remover tool

Remove the throttle cable anchor screw and washer. Loosen throttle cable retainer screw. And, remove the tie strap holding the tiller handle electrical harness.



- Cable anchor screw and washer
- Cable retainer screw
- Clip
- Tie strap

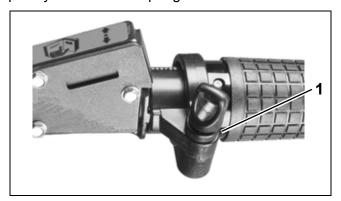
Remove the electrical cover.


Disconnect the electrical harness coming from the tiller handle.

Electrical harness connector

Remove throttle cable and wires from grommet in lower engine cover.

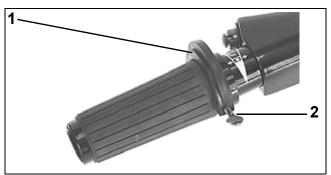
Remove the screw attaching steering handle. Remove handle.


1. Screw 31194

TILLER HANDLE SERVICE - STANDARD

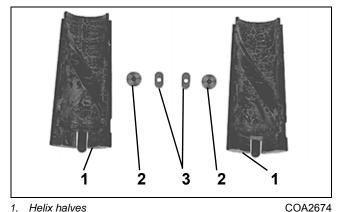
Disassembly

Loosen throttle friction control so there is no restriction on grip.

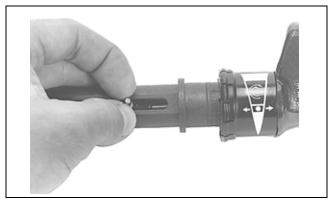

IMPORTANT: Do not back screw out completely. Nut is under spring tension.

Throttle friction control

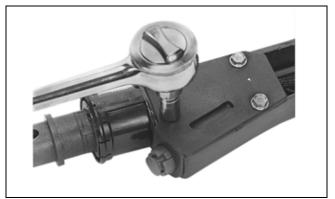
001259


Use Twist-Grip Remover, P/N 390767, to depress the grip detents. Tighten screw and remove the grip by pulling grip.

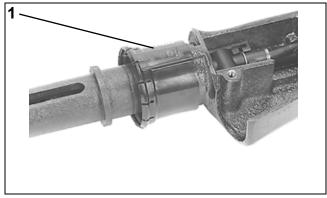
- Twist-Grip Remover


002189

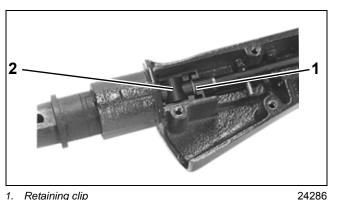
Remove the helix halves, rollers, and guides.


- Helix halves
- Rollers
- Guides

Pull the throttle pin out of the cable.

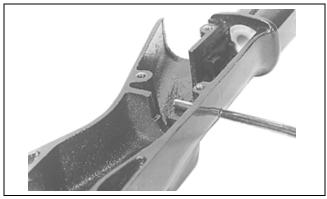

24294

Remove stop switch cover screws and cover/stop switch assembly.

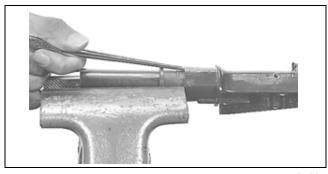

24288

Remove the throttle control plate.

1. Throttle control plate


Remove the throttle cable retaining clip. Pry the cable trunnion out of the steering handle and remove cable.

- Retaining clip
- Cable trunnion


IMPORTANT: DO NOT remove the inner handle except to replace it.

Use a punch and mallet to drive out the steel pin holding the inner handle into the steering handle.

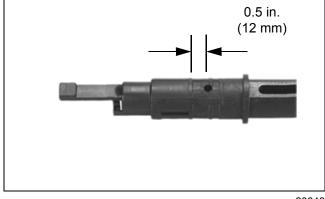
24285

Remove the plastic inner handle from the metal outer handle by driving the outer handle off with a mallet and a punch. Inner handle is bonded to the outer handle. After removing, chip away remnants of inner handle.

24284

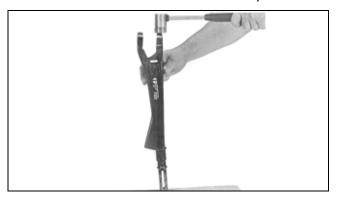
Remove throttle cable seal from the inner handle.

Inspection

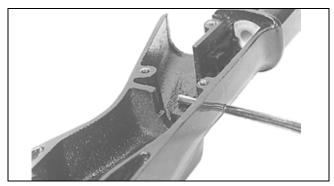

Inspect the throttle cable for kinks and wear. Replace if necessary.

Inspect the steering handle components for wear, cracks, or damage. Replace parts if necessary.

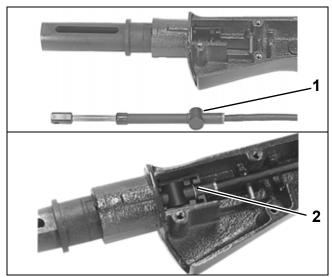
Assembly


Install the throttle cable seal in inner handle.

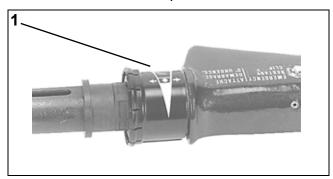
If removed, apply Loctite Depend 300 adhesive to inner handle at areas shown.


TILLER HANDLE SERVICE - STANDARD

Install the metal outer handle over the plastic inner handle and drive the outer handle into place.

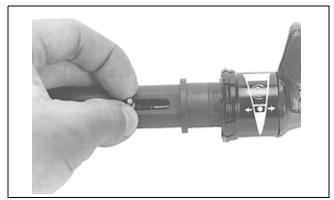

31202

Secure tab of the inner handle into recess of the outer handle with the steel pin.

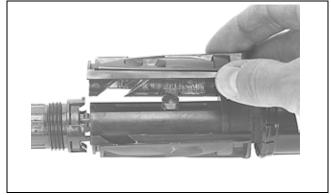

24285

Install the handle end of the throttle cable. Snap the throttle cable trunnion into the recess in the handle. Install the retainer clip.

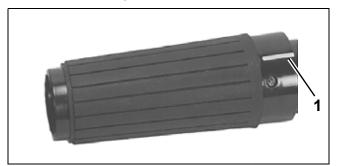
- 1. Throttle cable trunnion
- 2. Retainer clip


24282 24286 Install the throttle control plate on outer handle.

1. Throttle control plate

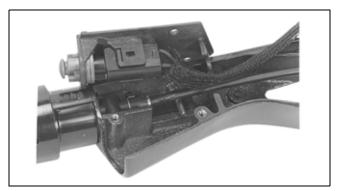

24295

Push the throttle cable pin through the end of the throttle cable.



24294

Lubricate end of the pin, guides, rollers, helix grooves, and inner handle guide slot with *Moly Lube*. Place the guides over the roller pin and into the slots of the inner handle. Place the rollers on the ends of the roller pin. Assemble the helix halves on the handle and slide the grip over the helix.



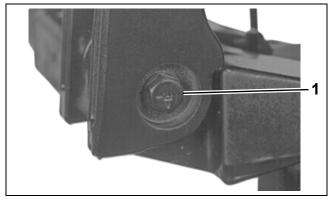
Be sure the twist-grip's speed indicator line is positioned with the speed range symbol on the handle. Snap the grip into place.

1. Indicator line

Slide the protective sleeve over the stop switch leads and throttle cable and install stop switch cover.

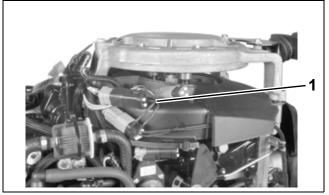
24291

002190


24288

Installation

Apply *Triple-Guard* grease to the two steering handle bushings. Place the bushings into the steering bracket. Attach the steering handle to the bracket. Tighten screw to a torque of 36 to 40 ft. lbs. (49 to 54 N·m).


A CAUTION

The steering handle nut must have a nylon patch for locking. Replace the nut if it has lost its locking feature. Tighten the nut so the steering handle can be pivoted and maintained in any position.

1. Screw 31194

Route throttle cable and electrical harness through grommet in lower motor cover. Connect harness to engine wiring harness.

1. Electrical harness connector

002511

TILLER HANDLE SERVICE - STANDARD

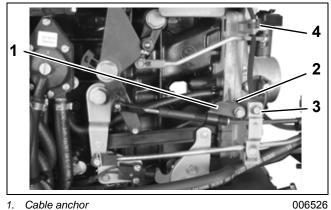
Install electrical cover.

002509

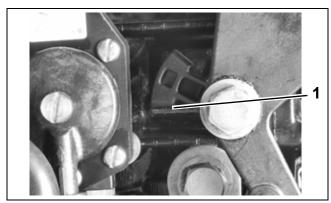
Throttle Cable Adjustment

Place throttle cable in position. Use Ball Socket Installer tool, P/N 342225, to snap throttle cable connector onto throttle lever.

Installer tool


Place throttle cable in upper anchor pocket. Install cable retainer on anchor block.

Hold twist grip in full SLOW position. Pull firmly on cable to remove backlash.


Adjust cable anchor so throttle cam is against idle stop when anchor screw aligns with throttle body boss. Then, rotate anchor four turns toward the end of the cable.

Install washer, cable anchor, and cable anchor screw on throttle body boss. Tighten screw securely.

Secure electrical harness with tie strap.

- Cable anchor
- 2. Boss
- Cable retainer
- Tie strap

Throttle lever stop

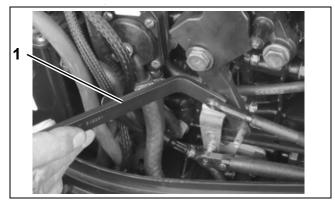
005114

Turn anchor four turns toward cable end.

006564

IMPORTANT: Rotate twist grip. Make sure throttle cam goes to full throttle without bending cable, and still returns to IDLE stop.

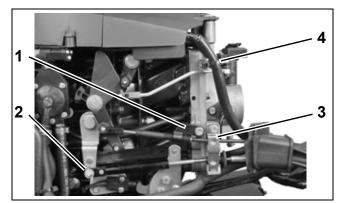
12


TILLER HANDLE SERVICE – Long Handle

Removal

▲ WARNING

To avoid accidental starting of engine while servicing, twist and remove all spark plug leads.

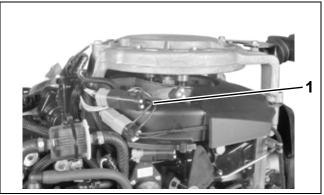

Use Ball Socket Remover tool, P/N 342226, to unsnap the throttle cable clip from the throttle lever.

1. Remover tool 0051

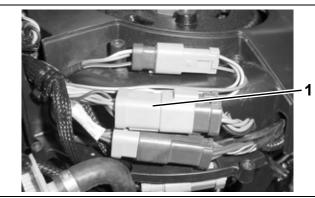
Remove the throttle cable anchor screw and washer. Loosen throttle cable retainer screw. And, remove the tie strap holding the tiller handle electrical harness.

Remove retainer clip from shift cable.

- 1. Throttle cable anchor
- 2. Shift cable retainer clip
- 3. Cable retainer
- 4. Tie strap


Remove the electrical cover.

Electrical cover


002509

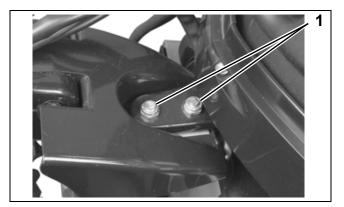
Disconnect the electrical harness coming from the tiller handle.

Rope Start models
1. Electrical harness connector

002511

Tiller Electric models

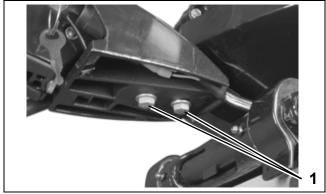
1. Electrical harness connectors


006745

001999

Remove shift and throttle cables and wire harness from grommet in lower engine cover.

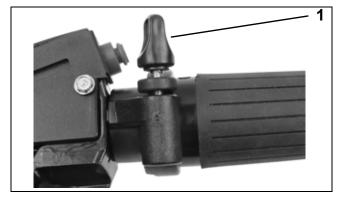
TILLER HANDLE SERVICE - LONG HANDLE


Remove locknuts from screws on top of steering arm.

1. Screw

006362

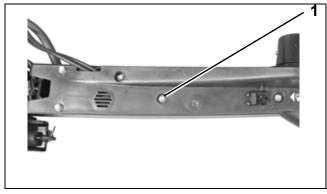
Remove the screws attaching tiller bracket to steering arm. Remove tiller bracket and handle.


1. Screw

006361

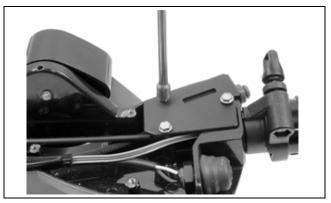
Disassembly

Loosen throttle friction control so there is no restriction on grip.


IMPORTANT: Do not back screw out completely. Nut is under spring tension.

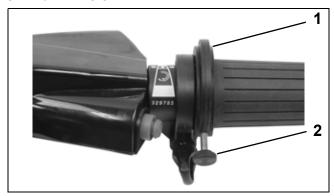
1. Throttle friction control

006711


Remove seven screws and bottom cover of tiller handle.

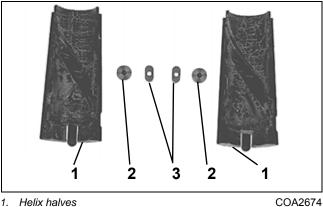
1. Cover screw

006566

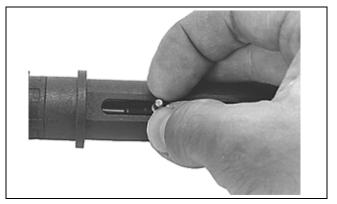

Remove stop switch cover screws, unplug stop switch electrical connector and remove stop switch assembly.

006713

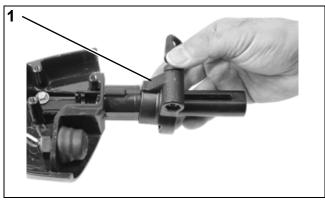
Disconnect trim switch connector. Remove connector from trim switch wires. Refer to CONNEC-TOR SERVICING on p. 160.


Use Twist-Grip Remover, P/N 390767, to depress the grip detents. Tighten screw and remove the grip by pulling grip.

- Twist-Grip Remover

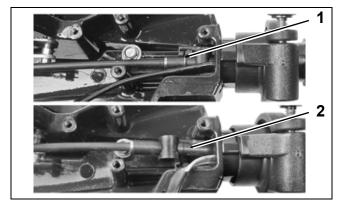

006710

Remove the helix halves, rollers, and guides.


- Helix halves 1.
- 2. Rollers
- Guides

Pull the throttle pin out of the cable.

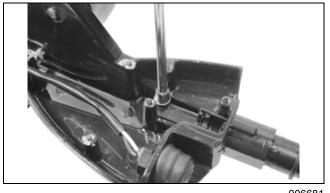
006712


Remove the throttle friction control.

Throttle friction control

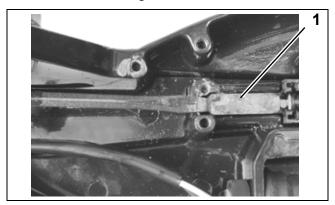
006671

Remove the throttle cable retaining clip. Pry the cable trunnion out of the steering handle and remove cable.



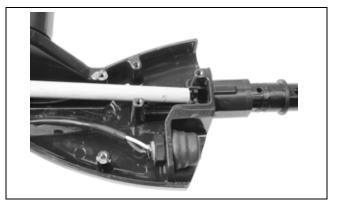
Throttle cable trunnion

006674

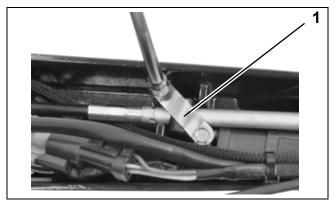

The trim switch wiring can now be removed from the inner handle.

Remove the screw and washer retaining the inner handle tab.

TILLER HANDLE SERVICE - LONG HANDLE

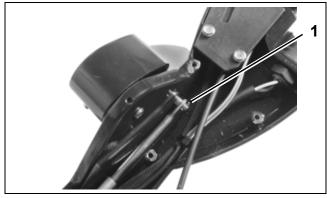

Use an appropriate tool to carefully pry up on the inner handle retaining tab.

Inner handle retainer tab


006679

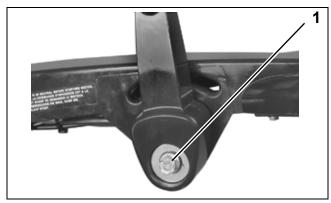
Use a wooden dowel and a soft mallet to remove the inner handle.

006678


Remove shift cable retainer from shift cable trunnion.

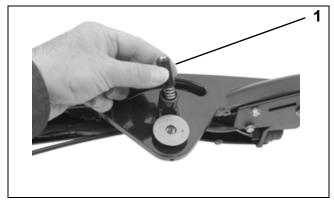
1. Shift cable retainer

006721

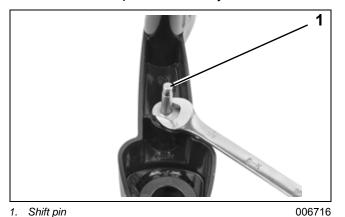

Remove cotter pin from shift handle pin. Remove shift cable.

1. Cotter pin

006708


Remove shift handle screw and washer. Remove shift handle, bushing and washer.

1. Shift handle screw


006714

Remove shift handle detent ball, spring and guide.

Detent ball, spring and guide

Remove the shift pin if necessary.

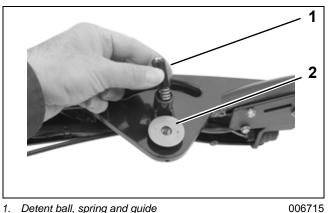
Inspection

Inspect the throttle cable for kinks and wear. Replace if necessary.

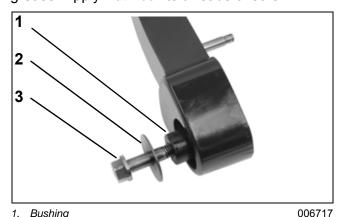
Inspect the shift cable for kinks and wear. Replace if necessary.

Inspect the steering handle components for wear, cracks, or damage. Replace parts if necessary.

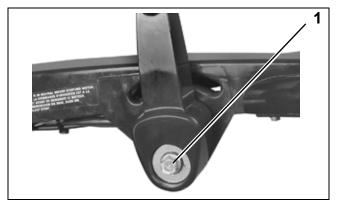
Assembly


Apply Nut Lock to threads of shift pin and install shift pin into shift handle. Tighten to a torque of 18 to 22 ft. lbs. (24.5 to 29 N·m).

1. Detent ball, spring and guide

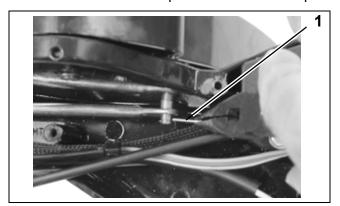

006716

Coat detent ball, spring and guide with Triple-Guard grease and install into shift handle. Place one washer on shift handle mounting boss.


- Detent ball, spring and guide
- Washer

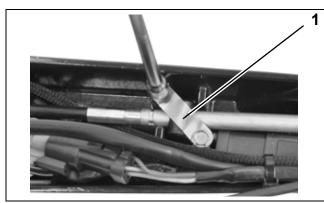
Coat bushing and washer with Triple-Guard grease. Apply Nut Lock to threads of screw.

- Bushing 1.
- Washer
- Screw


Install shift handle on tiller handle and tighten screw to a torque of 18 to 20 ft. lbs. (24.5 to 27 N·m).

1. Shift handle screw

TILLER HANDLE SERVICE - LONG HANDLE

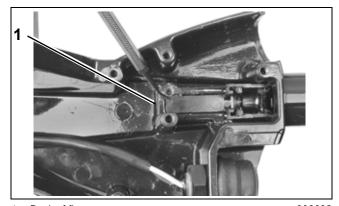

Install shift cable on shift pin with a new cotter pin.

1. Cotter pin

006720

Install shift cable retainer on shift cable trunnion.

1. Shift cable retainer


006721

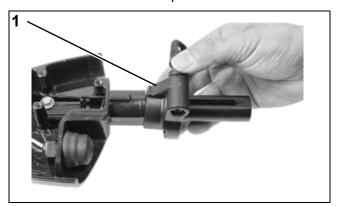
Use a soft-faced mallet to install the inner handle.

006680

Secure tab of the inner handle into the outer handle. Tab must be flush with the back of the flange and top of tab must be flush with top of flange.

1. Back of flange

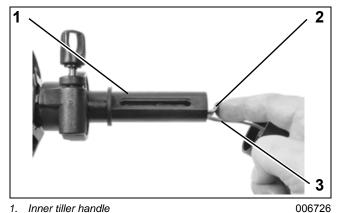
006682


Apply *Nut Lock* on the screw threads, install the washer and screw.

IMPORTANT: Turn self-tapping screw counterclock-wise until threads of screw engage threads of screw boss. Failure to follow this procedure will damage the screw boss threads. Once threads are engaged, tighten screw so that there is no space between tab, washer and screw. Top of tab MUST be flush with top of flange.

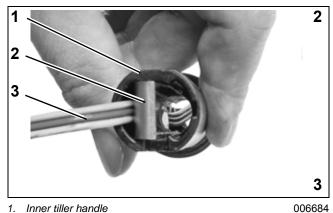
006681

Install the throttle control plate on outer handle.

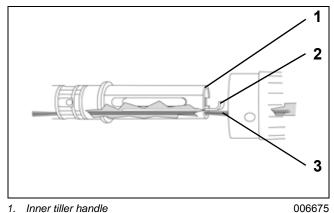

Throttle friction control

006671

Install trim switch wiring through inner steering handle.

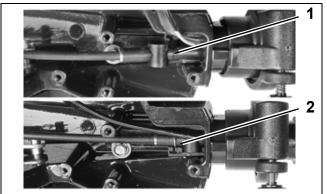

IMPORTANT: Trim switch wiring must NOT be twisted through the throttle twist grip or inner tiller handle / wire guide.

Insert wire guide into inner steering handle.


- 1. Inner tiller handle
- Wire guide 2.
- Trim switch wires

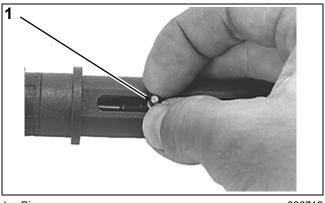
Wire guide should slide easily into place. If any binding is felt, inspect trim switch wiring for twisting. If wire guide is forced into place, it WILL damage trim switch wiring.

- 1. Inner tiller handle
- Wire guide
- Trim switch wires

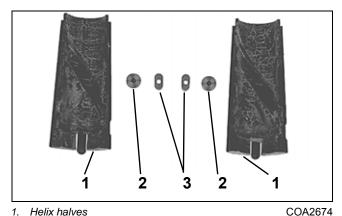

Make sure trim switch wiring is NOT twisted before proceeding.

- Inner tiller handle
- 2. Wire guide
- Trim switch wires

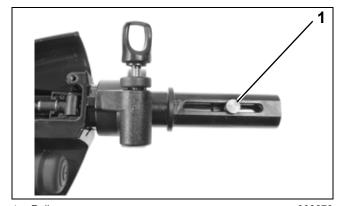
TILLER HANDLE SERVICE - LONG HANDLE


Install the handle end of the throttle cable. Snap the throttle cable trunnion into the recess in the handle. Install the retainer clip.

- Throttle cable trunnion
- Retainer


006683

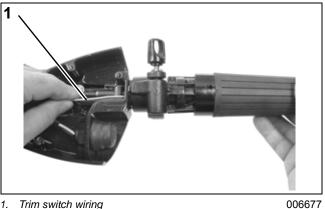
Push the throttle cable pin through the end of the throttle cable.


1. Pin 006712

Lubricate end of the pin, guides, rollers, helix halves, and inner handle guide slot with Moly Lube.

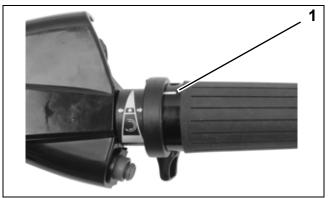
- Helix halves
- 2. Rollers
- Guides

Place the guides over the roller pin and into the slots of the inner handle. Place the rollers on the ends of the roller pin.

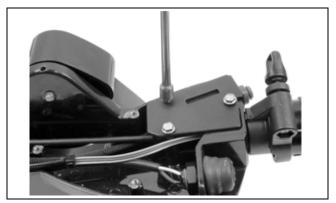

Roller 006670

Assemble the helix halves on the handle and slide the grip over the helix.

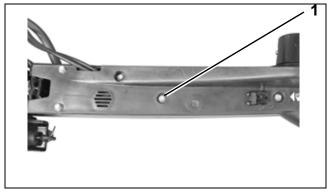
006718


Carefully pull trim switch wires through inner tiller handle as twist grip assembly is installed.

Trim switch wiring

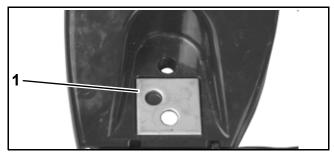

Install trim switch connector. Refer to CONNEC-TOR SERVICING on p. 160.

Be sure the twist-grip's speed indicator line is positioned with the speed range symbol on the handle. Snap the grip into place.


1. Indicator line 006719

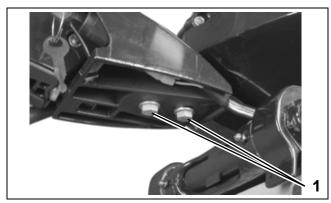
Install stop switch assembly and connect to harness.

006713


Install bottom cover of tiller handle with seven screws.

1. Cover screw 006566

Installation


The steering arm can be positioned straight, or angled 15° port or starboard by moving the adjustment plate.

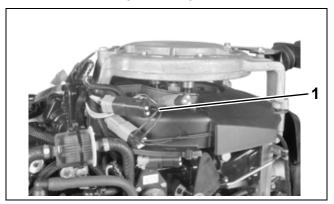
1. Plate adjustment for tiller in CENTER position.

005083

Place tiller bracket on steering arm from the bottom. Thread steering arm screws, with washers, into steering arm and tighten to a torque of 18 to 20 ft.lbs. (24.5 to 27 N·m).

1. Screw 006361

Install locknuts on screws on top of steering arm. Hold screws with wrench and tighten locknuts to a torque of 18 to 20 ft.lbs. (24.5 to 27 N·m).



1. Screw 006362

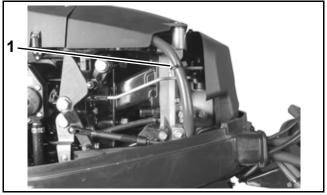
MIDSECTION


TILLER HANDLE SERVICE - LONG HANDLE

Route shift and throttle cables and electrical harness through grommet in lower motor cover. Connect harness to engine wiring harness.

Rope Start models
1. Electrical harness connector

002511

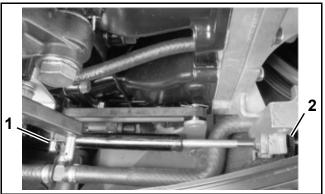


Tiller Electric models

1. Electrical harness connectors

001999

Use tie strap to secure harness to throttle body bracket.


1. Bracket 006314

Control Cable Installation

IMPORTANT: DO NOT complete final attachment of cables to shift and throttle levers until all cables, wires, and hoses have been routed and grommet has been placed into the lower engine cover.

Shift Cable Adjustment

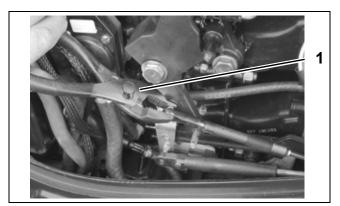
Pull firmly on shift cable casing to remove backlash. With outboard and tiller handle shift lever in NEUTRAL, place the cable trunnion into the lower anchor pocket. Adjust the trunnion nut so the casing fits onto the shift lever pin.

Shift lever pin
 Trunnion nut

002100

Secure shift cable to the shift lever pin. For proper installation, review the following steps:

- · Place washer on pin.
- Position retainer clip with straight section on the bottom and angled section on the top.
- Use long nose pliers to insert straight section of clip into linkage pin hole.
- Push the clip towards the hole while lifting on the curved end with the pliers.
- Be sure retainer clip fully engages the pin.
- Lock the retainer by moving the angled section behind the straight section.

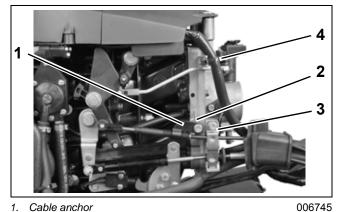


Locked Retainer Clip
1. Angled section behind straight section

DP0817a

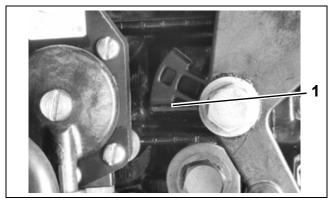
Throttle Cable Adjustment

Place throttle cable in position. Use Ball Socket Installer tool, P/N 342225, to snap throttle cable connector onto throttle lever.


Installer tool

Place throttle cable in upper anchor pocket. Install cable retainer on anchor block.

Hold twist grip in full SLOW position. Pull firmly on cable to remove backlash.


Adjust cable anchor so throttle cam is against idle stop when anchor screw aligns with throttle body boss. Then, rotate anchor four turns toward the end of the cable.

Install washer, cable anchor, and cable anchor screw on throttle body boss. Tighten screw securely.

Cable anchor

- 2. Boss
- 3. Cable retainer
- Tie strap

1. Throttle lever stop

005114

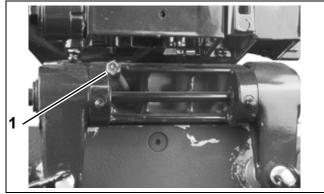
Turn anchor four turns toward cable end.

006564

IMPORTANT: Rotate twist grip. Make sure throttle cam goes to full throttle without bending cable, and still returns to IDLE stop.

MIDSECTION AND TILLER ADJUSTMENTS

Steering Friction Adjustment


Tiller models are equipped with a steering friction adjustment. Steering friction is not required when remote steering is used.

Adjust steering friction with outboard mounted to boat by loosening or tightening the adjustment screw. Steering friction should be adjusted so a slight drag is felt when turning.

Λ

WARNING

Do not overtighten. The steering friction screw is not intended to allow "hands off" steering.

1. Steering friction adjustment—Manual tilt models

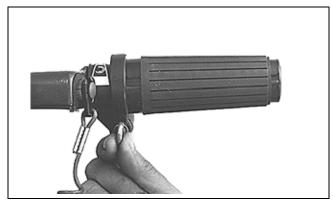
1. Steering friction adjustment—Power tilt models

005116

001256

Throttle Friction Adjustment

Tiller models are equipped with a throttle friction adjustment knob located on the steering handle. Tighten the knob to reduce the effort required to hold a throttle setting.


Turn the knob:

- clockwise to increase friction
- counterclockwise to decrease friction

Α

WARNING

Tighten knob only enough to hold throttle at a constant engine speed. Overtightening will prevent quick throttle change in case of emergency.

002191

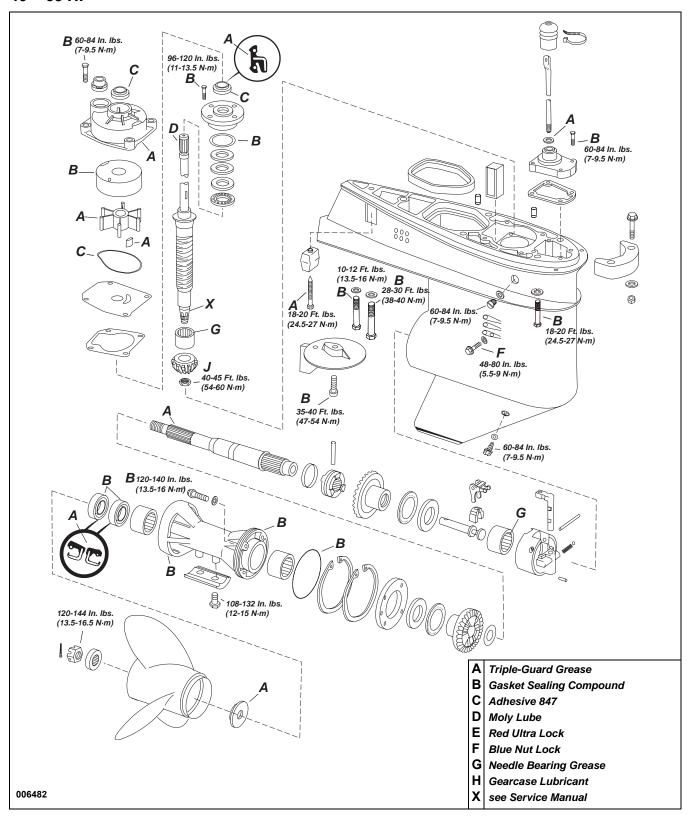
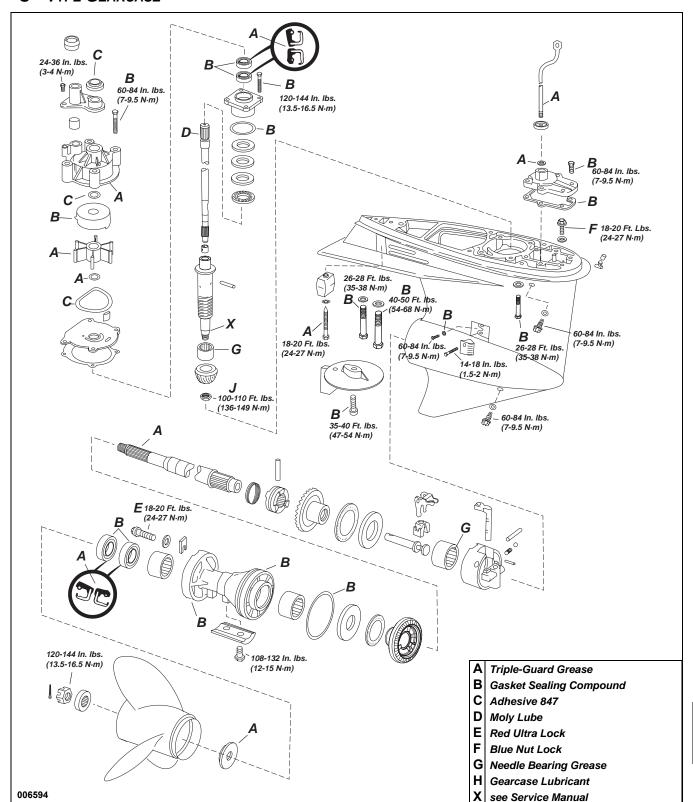
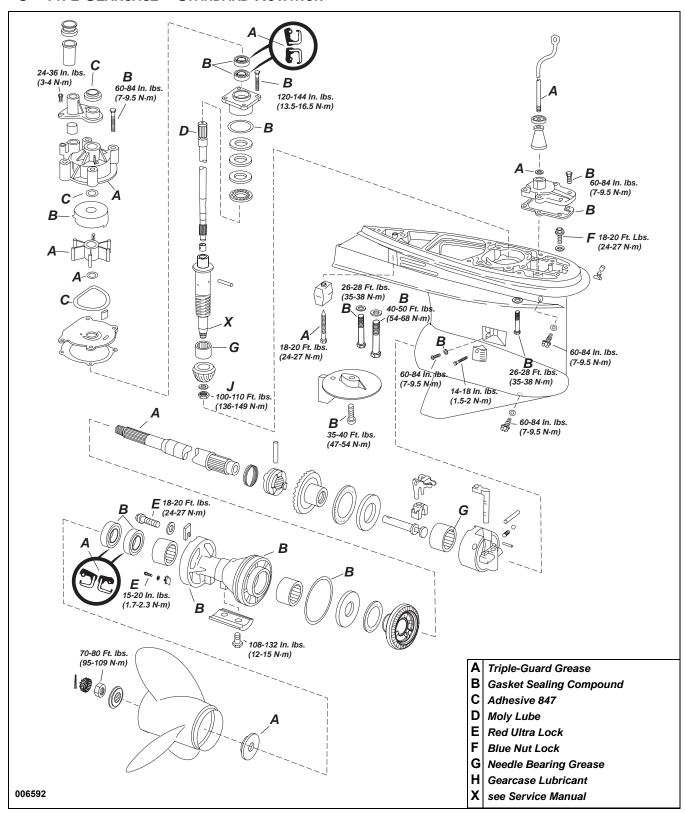

GEARCASE

TABLE OF CONTENTS


SERVICE CHARTS	
PROPELLER SERVICE	
GEARCASE LEAK TEST	
GEARCASE SERVICE, 40 – 65 HP MODELS	
GEARCASE REMOVAL AND INSTALLATION	
WATER PUMP SERVICE	
SHIFT ROD ADJUSTMENT	336
GEARCASE DISASSEMBLY	337
PROPELLER SHAFT BEARING HOUSING REMOVAL	
PINION GEAR AND DRIVESHAFT REMOVAL	
SHIFT HOUSING, GEAR AND PROPELLER SHAFT REMOVAL	
SHIFTER, BEARING AND SEAL SERVICE	
DRIVESHAFT SHIMMING	348
GEARCASE ASSEMBLY	
SHIFT HOUSING, GEAR, AND PROPELLER SHAFT INSTALLATION	
SHIFT ROD HOUSING INSTALLATION	
PINION GEAR AND DRIVESHAFT INSTALLATION	
PROPELLER SHAFT BEARING HOUSING AND GEAR INSTALLATION	
GEARCASE SERVICE, 75 – 90 HP MODELS	
GEARCASE REMOVAL AND INSTALLATION	
WATER PUMP SERVICE	356
SHIFT ROD ADJUSTMENT	359
GEARCASE DISASSEMBLY	
PROPELLER SHAFT BEARING HOUSING REMOVAL	
PINION GEAR AND DRIVESHAFT REMOVAL	
DRIVESHAFT SERVICE	
SHIFT HOUSING, GEAR AND PROPELLER SHAFT REMOVAL	
GEARCASE HOUSING INSPECTION	
SHIFTER, BEARING AND SEAL SERVICE	
DRIVESHAFT SHIMMING	373
GEARCASE ASSEMBLY	
SHIFT HOUSING, GEAR, AND PROPELLER SHAFT INSTALLATION	
SHIFT ROD HOUSING INSTALLATION	
PINION GEAR AND DRIVESHAFT INSTALLATION	
PROPELLER SHAFT BEARING HOUSING AND GEAR INSTALLATION	

SERVICE CHARTS


40 – 65 HP

"S"-TYPE GEARCASE

"O"-TYPE GEARCASE - STANDARD ROTATION

18

GEARCASE TYPES, 75 – 90 HP

Outboard Model	Gearcase Type	General Comparison	Service Procedure Comparison
(L) Models with 20 in. shaft	"S"	Unique housing, shafts, gears, and bearings	Similar
(X) Models with 25 in. shaft	"O"	Unique housing, shafts, gears, and bearings	

PROPELLER SERVICE

Inspection

Carefully examine propeller and outboard for the following:

- Damaged blades and signs of propeller cavitation (burned paint, etc.)
- Spun or overheated inner hub
- Worn or twisted splines and inadequate lubricant
- Damaged or missing converging ring (if applicable)
- Damage to outer hub area
- Worn, missing, or incorrect thrust washer and spacer
- Correct size and style
- Check for bent or damaged propeller shaft and twisted splines.

Refer to **Propeller Hardware Installation** on p. 70.

▲ WARNING

When servicing the propeller, always shift the outboard to NEUTRAL, turn the key switch OFF, and disconnect the battery positive (+) cable so the outboard cannot be started accidentally.

GEARCASE LEAK TEST

Drain lubricant before testing.

Install lubricant drain/fill plug and seal, thread pressure test gauge fitting and seal in lubricant level hole.

Pressurize 3 to 6 psi (21 to 42 kPa).

If pressure gauge indicates leakage, submerge the gearcase in water to determine source of leak.

If the gearcase pressure gauge does not indicate leakage, increase pressure to 16 to 18 psi (110 to 124 kPa). Check for leakage.

Make necessary repairs and repeat test.

Install vacuum test gauge. Apply 3 to 5 in. of vacuum (76 to 127 mm) Hg. with pump.

Check for leaks.

If leakage occurs, apply oil around suspected seal. If leak stops or oil is drawn in, that seal is defective.

Repeat test, gearcase must hold minimum of 15 in. vacuum (381 mm) Hg.

002388

GEARCASE REMOVAL AND INSTALLATION

Gearcase Removal

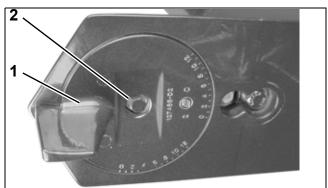
Λ

WARNING

To prevent accidental starting while servicing, twist and remove all spark plug leads.

During service, the outboard may drop unexpectedly. Avoid personal injury; always support the outboard's weight with a suitable hoist or the tilt support bracket during service.

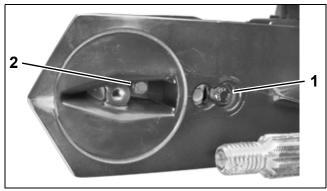
Remove pin and washer from shift rod lever to release the lower shift rod.



1. Shift rod screw

002171

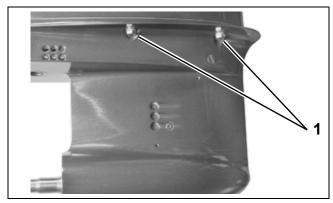
001996


Note where the index mark on the gearcase aligns with the index number of the adjustable trim tab so the trim tab can be installed in the same position. Remove the trim tab retaining screw and trim tab from the gearcase.

1. Trim tab

Trim tab retaining screw

Remove the forward screw with washer and recessed retaining screw.



1. Forward screw

001995

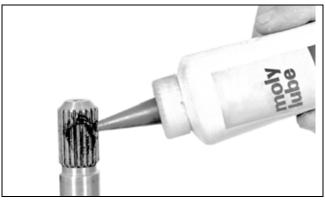
2. Recessed screw

Remove the four gearcase retaining screws.

1. Gearcase retaining screws

001994

Remove the gearcase assembly from the exhaust housing, being careful not to bend the shift rod.


Gearcase Installation

WARNING

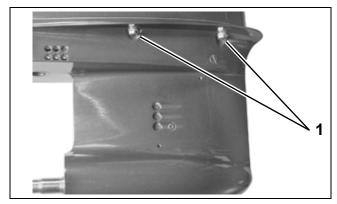
During service, the outboard may drop unexpectedly. Avoid personal injury; always support the outboard's weight with a suitable hoist or the tilt support bracket during service.

NOTICE Before installing gearcase, shift rod adjustment MUST be checked. Refer to SHIFT ROD ADJUSTMENT on p. 336.

Coat the driveshaft splines with *Moly Lube*. DO NOT coat top surface of the driveshaft as lubricant may prevent seating of the driveshaft in the crankshaft.

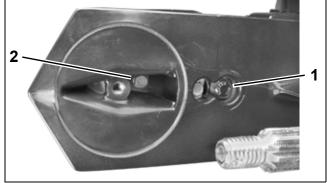
30385

Apply *Adhesive 847* to the exhaust housing seal's inner surface. Place the seal on the exhaust housing. Apply *Triple-Guard* grease to the seal's outer surfaces.


Slide the gearcase into place, making sure:

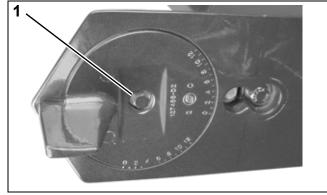
- Driveshaft engages the crankshaft.
- · Inner exhaust housing installs correctly.
- Shift rod does not turn and is positioned properly in shift shaft connection area.

Apply *Gasket Sealing Compound* to threads of the gearcase retaining screws. Tighten the screws to a torque of:


- 3/8 in. screws 18 to 20 ft. lbs. (24 to 27 N·m)
- 7/16 in. screw 28 to 30 ft. lbs. (38 to 40 N·m)

• **5/16 in.** screw – 10 to 12 ft. lbs. (13.5 to 16 N·m)

1. 3/8 in. screws


001994

7/16 in. screw
 5/16 in screw

001995

Apply *Gasket Sealing Compound* to threads of the trim tab screw. Install and align the trim tab with the index marks noted prior to disassembly. Tighten the trim tab screw to a torque of 35 to 40 ft. lbs. (47 to 54 N·m). For adjustment, refer to **Trim Tab Adjustment** on p. 76.

1. Trim tab screw

001996

13

GEARCASE SERVICE, 40 - 65 HP MODELS

WATER PUMP SERVICE

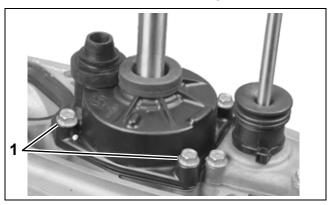
Place the shift rod in the shift rod lever. Install the retaining pin and washer. Tighten pin to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

1. Shift rod screw

002171

Λ

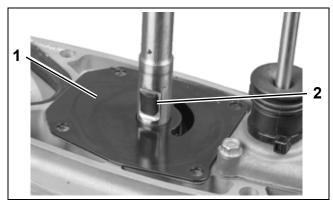
WARNING


To prevent loss of operator control, check for proper shifting operation and adjust, if necessary.

IMPORTANT: During break-in period of a reassembled gearcase, change the gearcase lubricant between 10 to 20 hours of operation.

WATER PUMP SERVICE

Disassembly


Remove the four impeller housing screws.

1. Impeller housing screws

001203

Slide the water pump off the driveshaft. Remove the impeller drive key, impeller plate, and gasket. Discard the gasket.

Impeller plate
 Drive key

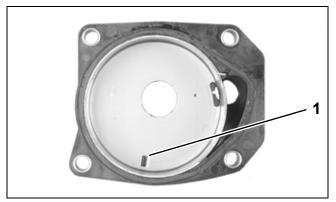
001214

Z. Divokoy

Remove all the parts from the housing.

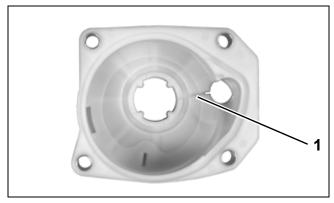
Inspection

Check impeller for overheating, hub separation, and other wear or damage.


Check liner and wear plate for scoring, distortion, and impeller material transfer.

Inspect the housing for cracks or melting.

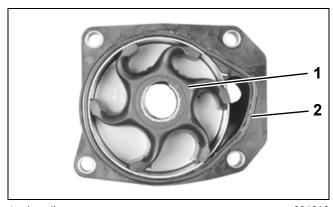
Make sure gasket surface is clean and smooth.


Assembly

Lightly coat the exterior rim of the impeller cup with *Gasket Sealing Compound*. Install the cup in the impeller housing. The cup locks in place in the housing with a square index tab.

1. Index tab 001215

IMPORTANT: Do not allow any sealer to get into the air bleed groove in the impeller housing. If this groove is blocked by adhesive, the pump will lose its prime and will not pump water.

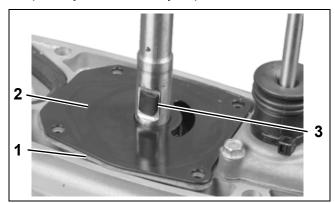


1. Air bleed groove

006415

Lightly coat the inside of the liner with *Triple-Guard* grease. With a counterclockwise rotation, install the impeller into the liner with the slot for the impeller key facing out.

Apply a thin bead of *Adhesive 847* in the seal groove, and install the special shaped O-ring seal.



Impeller
 O-ring seal

001216

Apply *Gasket Sealing Compound* to both sides of a new impeller plate gasket. Install the gasket and impeller plate.

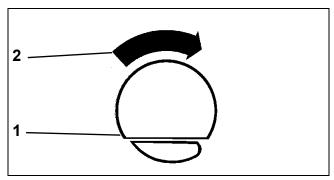
Apply *Triple-Guard* grease or *Adhesive 847* to temporarily hold drive key in place.

1. Impeller plate gasket

2. Impeller plate

3. Drive key

001217


The sharp edge of the key is the leading edge in clockwise rotation.

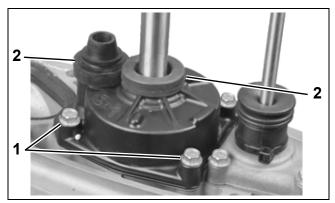
Slide the water pump down the driveshaft. Align impeller slot with the impeller key. Rotate the driveshaft to engage the impeller key with the

GEARCASE SERVICE, 40 - 65 HP MODELS

SHIFT ROD ADJUSTMENT

impeller, and slide water pump down over key. Be sure impeller key does not fall out of position.

- 1. Sharp edge of drive key
- 2. Direction of driveshaft rotation

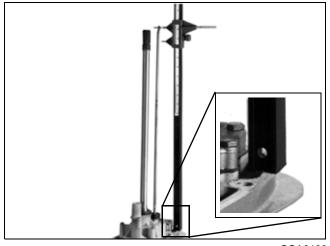

CO2995

NOTICE Make sure the impeller engages the impeller key. Serious powerhead damage will result if impeller key is not in place.

Align the impeller housing with the gearcase. Apply *Gasket Sealing Compound* to threads of the four impeller housing screws. Install the screws and tighten to a torque of 60 to 84 in. lbs. (7 to 9.5 $N \cdot m$).

Install the water tube grommet on the impeller housing.

Apply a thin bead of *Adhesive 847* to groove of the impeller housing grommet. Install the grommet on the impeller housing.


- 1. Housing screws
- 2. Water tube grommet
- 3. Impeller housing grommet

001203

NOTICE Before installing gearcase, shift rod adjustment MUST be checked. Refer to SHIFT ROD ADJUSTMENT on p. 336.

SHIFT ROD ADJUSTMENT

Check the shift rod height from the shift rod hole to the surface of the gearcase using Universal Shift Rod Height Gauge, P/N 389997.

COA6166

With the gearcase in NEUTRAL, rotate the shift rod up or down as necessary for correct adjustment. Once correct height is achieved, rotate rod one half turn or less to direct offset to the rear.

Shift Rod Height:

• 21.38 in. (543 mm) ± One-Half Turn

GEARCASE DISASSEMBLY

GEARCASE DISASSEMBLY

Pre-Disassembly Inspection

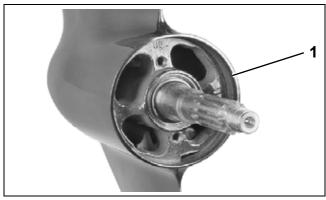
MARNING

Wear safety glasses to avoid personal injury, and set compressed air pressure to less than 25 psi (172 kPa).

IMPORTANT: Clean and inspect all parts during disassembly. Replace any damaged parts, seals, O-rings, and gaskets.

Remove the propeller and mounting hardware.

Drain and inspect oil as described in **Gearcase Lubricant** on p. 85.


Remove gearcase. Refer to **GEARCASE REMOVAL AND INSTALLATION** on p. 332.

Remove water pump. Refer to **WATER PUMP SERVICE** on p. 334.

Before disassembling the gearcase, examine the following:

- Gearcase Housing Check for visible damage to skeg, strut, anti-ventilation plate, bullet, and mating surface. Check seal areas for visible signs of lubricant leakage.
- Propeller Shaft Check for bent or damaged shaft. Check for twisted splines and damaged threads.
- Shift Rod Check for misadjusted, bent, or binding rod. A misadjusted shift rod height can cause shift difficulty, loss of boat and outboard control, and gearcase damage.

 Hydrostatic Seal Grooves — Must be in good condition to help prevent propeller ventilation.

1. Hydrostatic seal grooves

002217

 Gearcase Anodes — If anodes have eroded to two-thirds their original size, they must be replaced.

1. Gearcase anode

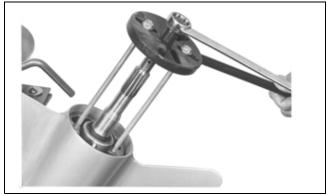
002014

- Drive Shaft Check splines for visible damage, twisting and wear. Severe spline wear indicates the exhaust housing or gearcase has been distorted, possibly by impact damage.
- Water Intake Screens Check for damage and blockage. If screens cannot be cleaned, they must be replaced. Different screens are available and should not be mixed. Refer to correct model parts manual for listing and description.

GEARCASE SERVICE, 40 – 65 HP MODELS

GEARCASE DISASSEMBLY

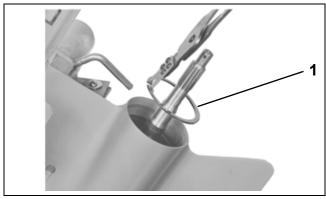
Propeller Shaft Bearing Housing Removal


Use a 5/16 in. thin wall socket to remove the four screws with O-rings holding the propeller shaft bearing housing.

COA3571

Remove the propeller shaft bearing housing from the gearcase using the following:

- Puller body, screw, and handle from Universal Puller Set, P/N 378103.
- Two 5/16-18 x 8 in. screws, P/N 316982, from Universal Puller Set, P/N 378103.



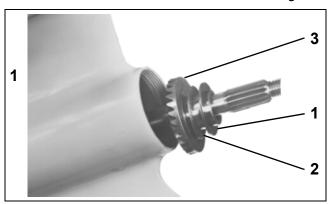
9437

Remove the two retaining rings using Retaining Ring Pliers, P/N 331045.

▲ CAUTION

Retaining rings are under extreme pressure during removal and installation. To prevent personal injury, wear safety glasses and proceed with care to avoid unsnapping the ring from the pliers. After the retaining rings are removed far enough from the gearcase to clear the housing, release the tension on the pliers while retaining ring is still around the propeller shaft.

1. Retaining ring


9438

Remove the retainer plate from the gearcase.

1. Retainer plate

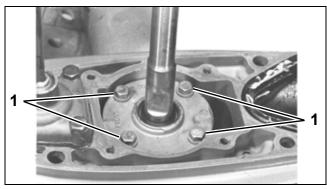
Remove the larger thrust washer, thrust bearing, and reverse gear from the gearcase. Remove the smaller thrust washer located in front of the gear.

- 1. Larger thrust washer
- 2. Thrust bearing
- Reverse gear

COA3514

Pinion Gear and Driveshaft Removal

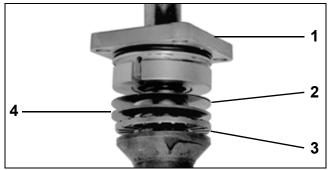
Adjust the shift rod to move the clutch dog as far forward as possible. This will help ease removal of the pinion nut.


Use Driveshaft Holding Socket, P/N 334995, and an 11/16 in. open-end wrench to loosen and remove the pinion nut from the bottom of the driveshaft. Pad handle of the wrench to prevent damage to gearcase.

- 1. Holding socket
- 2. 11/16 Wrench

COA3573T

Remove the four driveshaft bearing housing screws.



1. Driveshaft bearing housing screws

COA3671

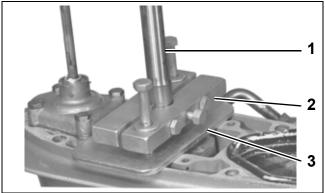
COA3558

Remove the driveshaft from the gearcase. The bearing housing, shims, thrust bearing, and thrust washer will come out with the driveshaft.

- . Bearing housing
- 2. Shims
- 3. Thrust bearing
- 4. Thrust washer

If driveshaft cannot be removed, refer to **Locked Driveshaft Removal on p. 340**.

Remove the pinion gear from the gearcase.

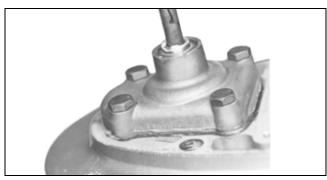


GEARCASE SERVICE, 40 - 65 HP MODELS

GEARCASE DISASSEMBLY

Locked Driveshaft Removal

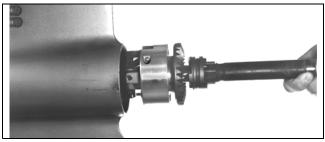
The driveshaft to pinion taper is a locking taper. If necessary, use Puller, P/N 387206, and Backing Plate, P/N 325867, to break the lock. Install the tools as shown by clamping them around the driveshaft with the tool's setscrew aligned with the impeller drive key slot. Tighten the setscrew into the slot. Alternately tighten the two vertical screws against the backing plate inserted between the puller and the gearcase until the driveshaft pops loose from the pinion.


- 1. Drive shaft
- 2. Puller
- 3. Backing plate

COA3664

Shift Housing, Gear and Propeller Shaft Removal

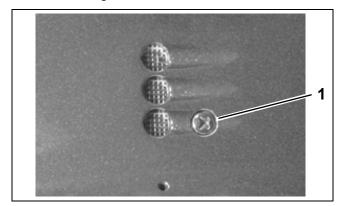
Push down on the shift rod. This will move the detent lever downward to clear the inside of the gearcase when the shaft assembly is pulled out. Unscrew the shift rod from the detent lever. Remove screws, cover, and shift rod from the gearcase.


Discard the cover gasket. Remove and discard the shift rod O-ring from inside of cover.

COA3666

IMPORTANT: Make sure oil fill/drain plug is removed from gearcase.

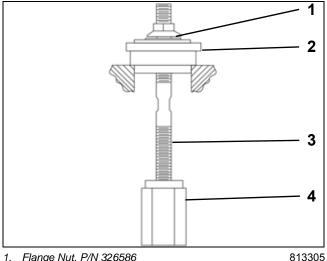
Remove propeller shaft assembly from gearcase.



SHIFTER, BEARING AND **SEAL SERVICE**

Pinion Bearing Removal

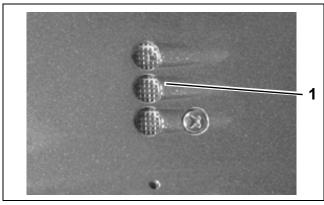
Inspect the pinion bearing for damage without removing it. If the bearing is removed for any reason, it must be replaced.


If the pinion bearing must be replaced, remove the bearing retaining screw from the gearcase. Discard the O-ring from the screw.

1. Bearing retaining screw

001997

Assemble Pinion Bearing Remover and Installer, P/N 5005927, in the gearcase as follows:

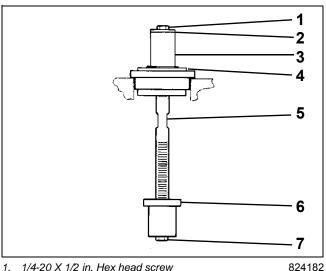


- 1. Flange Nut, P/N 326586
- Plate, P/N 391260
- 3. Rod. P/N 326582
- 4. Remover, P/N 326580

Use a 1 in. wrench to hold the remover in place. Use a 3/4 in. wrench to turn flange nut clockwise and draw the bearing up from the housing.

Water Intake Screen

Inspect the water intake screen for blockage and remove it by depressing the tabs on either side of the screen and pushing upward.


Water intake screen

001997

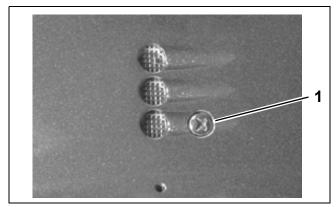
Pinion Bearing Installation

Install the water intake screen. Drop it into the water intake cavity and use a suitable tool to push it down as far as it will go.

Assemble Pinion Bearing Remover and Installer, P/N 391257, as shown:

- 1/4-20 X 1/2 in. Hex head screw
- 1 in. O.D. Flat washer Spacer, P/N 326584
- Plate, P/N 391260
- Rod, P/N 326582
- 6. Installer, P/N 326575
- 1/4-20 X 1 1/4 in. Hex head screw

IMPORTANT: Spacers are different sizes and cannot be interchanged.


GEARCASE SERVICE, 40 – 65 HP MODELS

SHIFTER, BEARING AND SEAL SERVICE

Place the bearing on the installer tool with the **lettered side of the bearing facing the top** of the gearcase. Use *Needle Bearing* grease to hold the bearing on the tool.

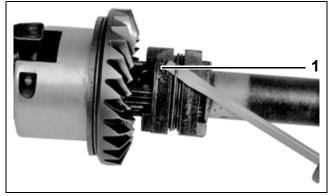
Insert the tool with the bearing into the gearcase. Drive the bearing into the gearcase until the washer on the tool contacts the spacer.

Place a new O-ring on the pinion bearing retaining screw. Apply Gasket Sealing Compound to O-ring and Nut Lock to screw threads. Install the screw and tighten to a torque of 48 to 80 in. lbs. (5.5 to 9.0 N·m).

1. Bearing retaining screw

001997

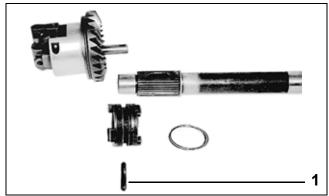
Shift Housing Disassembly



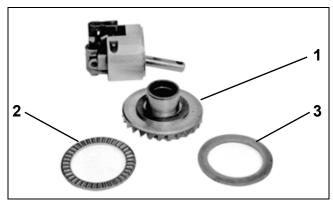
WARNING

Wear safety glasses to avoid injury.

IMPORTANT: The shift housing and forward gear bearing are serviced as an assembly. If either are worn or damaged, replace the complete assembly.


Insert a suitable tool under one end of the clutch dog spring and remove it from its groove by unwrapping it from around the clutch dog. **Discard the spring**.

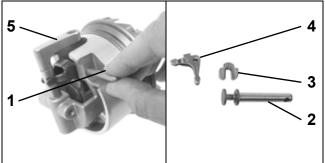
1. Clutch dog spring


COA3560

Push the pin out of the clutch dog. Remove all parts.

Pin

Remove the gear, thrust bearing, and thrust washer from the shift housing.

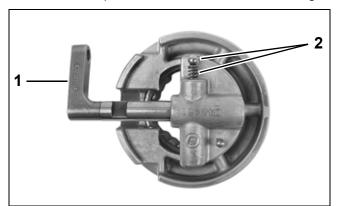


- 1. Gear
- 2. Thrust bearing
- Thrust washer

COA3562

SHIFTER, BEARING AND SEAL SERVICE

Remove the shift lever pin from the housing. Remove shift shaft, cradle and shift lever. Move shifter detent as needed to help ease removal of parts.


- Shift lever pin
- 2. Shift shaft
- Cradle
- Shift lever
- Shifter detent

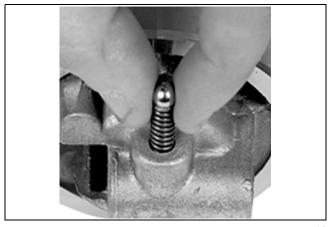
DSC02449 DSC02489

WARNING

Wear safety glasses to avoid personal injury. The detent ball and spring and come out with great force.

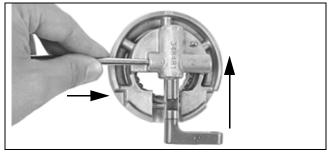
Wrap the housing with a shop cloth to catch ball and spring. Rotate the shifter detent 90° in either direction, then pull the detent out of the housing.

- Shifter detent
- 2. Ball and spring


DSC02518

Remove the detent ball and spring.

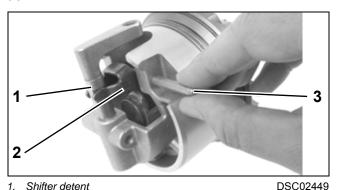
Shift Housing Assembly


IMPORTANT: Clean and inspect all parts before beginning assembly procedures. Replace any damaged parts.

Lightly coat the detent ball and spring with Needle Bearing grease. Insert the spring in the housing, then the ball.

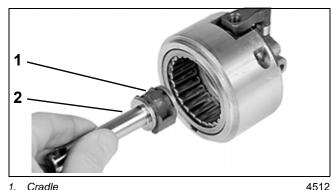
4518

Insert shifter detent at 90° angle into the housing as shown, while depressing the ball and spring with a suitable tool. Once the shifter detent is past the ball, remove the tool and position detent to engage NEUTRAL position.



DSC02506

GEARCASE SERVICE, 40 - 65 HP MODELS

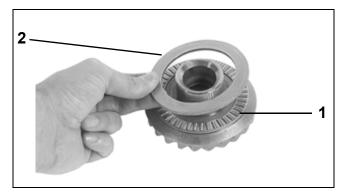

SHIFTER, BEARING AND SEAL SERVICE

With shifter detent in NEUTRAL, install arms of shift lever into detent slots. Align the pivot holes and insert the retaining pin. Push shifter detent down.

- Shifter detent
- Shift lever
- Pin, shift lever

Rest the cradle on the shift shaft.

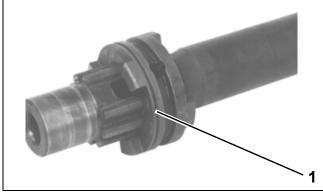
- Cradle
- Shift shaft


Place the shift lever arms into the recesses of the shift cradle. Pull shifter detent back up to NEU-TRAL position to hold the cradle and shaft in position.

001219

Coat thrust bearing and thrust washer with *Needle* Bearing grease. Place the bearing on the back of the gear. Set the washer on top of the thrust bearing. Insert the gear, bearing, and washer into the bearing housing.

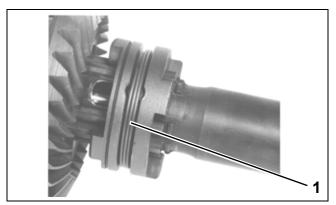
NOTICE Bearing and washer must installed in the correct order.



- Thrust bearing
- Thrust washer

DSC02297

Align holes in the clutch dog with slot in the propeller shaft. Install the clutch dog with grooved end toward the forward end of the shaft.


NOTICE The clutch dog is not symmetrical. If installed backward, it will not fully engage and will immediately damage itself and the gears.

Grooved end

SHIFTER, BEARING AND SEAL SERVICE

Slide the propeller shaft onto the shift shaft, align the hole in the shaft with the hole in the clutch dog, install the pin and then, a **new** clutch dog retaining spring. Place three coils over each end of the pin, MAKING SURE NONE OF THE COILS OVERLAP OR ARE LOOSE.

1. Retaining spring

COA3592

Driveshaft Bearing Housing Service

The driveshaft bearing is not serviceable. Replace the bearing housing assembly if the bearing is worn or damaged. Also, inspect the driveshaft bearing surface if the bearing is damaged.

Remove the driveshaft bearing housing seal using Puller Bridge, P/N 432127, and Large Puller Jaws, P/N 432129. Discard the seal.

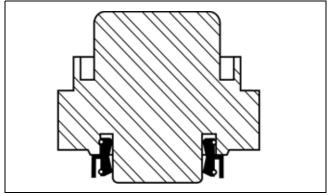
14155

Remove and discard the O-ring from the bearing housing.

Clean the bearing housing in solvent to remove sealer from the seal bore and the O-ring groove.

Lightly apply *Gasket Sealing Compound* to a new O-ring. Install the O-ring in top groove of the bearing housing. Do not allow sealant in oil passage.

NOTICE Do not install the O-ring in the bearing housing's bottom groove. The bottom groove is an oil passage. Gearcase damage could result.


1. O-ring (top groove)

2. Oil passage

14156

Apply *Adhesive 847* to casing of new seal before installing.

Use Seal Installer, P/N 342665 to install seal in bearing housing with the exposed lip facing away from housing. Apply *Triple-Guard* grease to seal lips.

DRC5720

13

GEARCASE SERVICE, 40 – 65 HP MODELS

SHIFTER, BEARING AND SEAL SERVICE

Propeller Shaft Bearing Housing Service

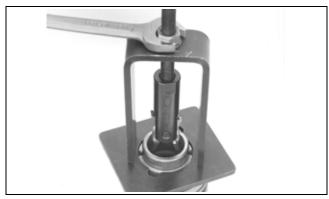
Rear Seal Removal

Remove seals using Puller Bridge, P/N 432127, and Large Puller Jaws, P/N 432129. Place the plate on top of the housing to support the bridge, and tighten jaws securely behind the inner seal.

21047

Bearing Removal

IMPORTANT: Inspect bearings in place. If a bearing is removed for any reason, it must be discarded.


Remove rear bearing using Puller Bridge, P/N 432127, and Large Puller Jaws, P/N 432129. Place the puller plate on top of the housing to support the bridge, and tighten jaws securely behind the bearing.

21045

Remove front bearing using Puller Bridge, P/N 432127, and Bearing Puller, P/N 432130. Place the puller plate on top of the housing to sup-

port the bridge, and tighten jaws securely behind the bearing.

21067

Inspect the bearing housing anode. Replace anode if it is reduced to two-thirds of original size. Tighten screws to a torque of 108 to 132 in. lbs. (12 to 15 $N \cdot m$).

1. Anode 001220

Discard the bearing housing O-ring. Clean the housing and bearings in solvent and dry thoroughly. If bearings were not replaced, rotate the needles to check for freedom of movement.

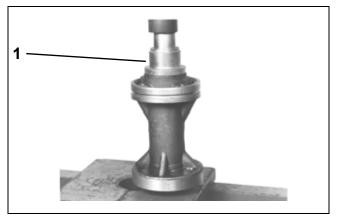
Inspect O-ring groove. Sand off any sharp edges that might cut O-ring. Remove any nicks or burrs on front of bearing housing.

1. O-ring groove

DSC02291

SHIFTER, BEARING AND SEAL SERVICE

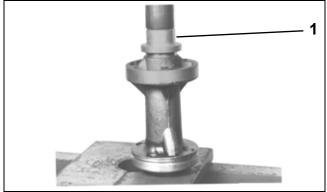
Thoroughly clean the four bearing housing retaining screws in solvent. Discard the O-rings.


Bearing Installation

Oil, then install new bearings in bearing housing.

Place the **lettered end** of the bearing case on the bearing installer, then press the bearing into the housing until the tool seats. When installed, the lettered end of the bearing should be visible.

Bearing Installation Tool:


• P/N 326562

Forward Bearing

1. Bearing installation tool

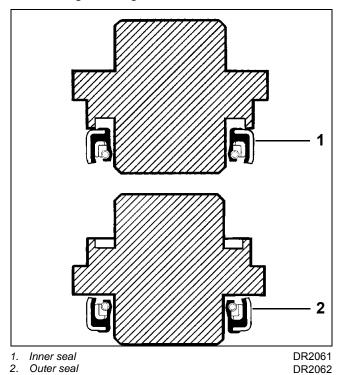
COA3579

Rear Bearing

1. Bearing installation tool

COA3580

Rear Seal Installation


Apply *Gasket Sealing Compound* to metal casings of the seals before installing.

Use Seal Installation Tool to install new seals back to back in bearing housing.

Seal Installation Tool:

P/N 326551

Install inner seal with lip facing toward the bearing housing, then outer seal with lip facing away from the bearing housing.

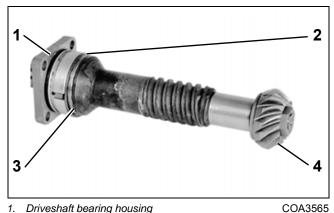
Apply Triple-Guard grease to seal lips.

DRIVESHAFT SHIMMING

NOTICE If a new pinion gear is needed, replace gear set before shimming.

Pinion gear backlash is adjusted by using shims between the driveshaft bearing housing and the thrust washer. When installing a new thrust bearing or washer, bearing housing, pinion, or driveshaft, it is necessary to properly shim the assembly to restore the correct clearance.

Use Driveshaft Shimming Tool, P/N 5005925.

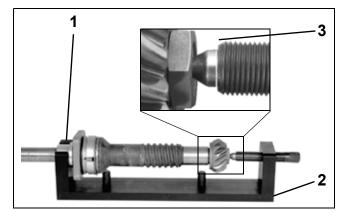

Shim gauge bars are precision made and should be handled carefully. The length of each bar is stamped near the part number. This dimension is 0.020 in. (0.508 mm) shorter than the actual shimmed length of the driveshaft.

IMPORTANT: Clean pinion and driveshaft before assembly. Replace any damaged parts.

Assemble the driveshaft bearing housing, thrust washer, thrust bearing, and pinion onto the driveshaft. Use Driveshaft Seal Protector. P/N 312403. when installing or removing the bearing housing.

Lightly coat the threads of the pinion nut with outboard lubricant and tighten to a torque of 40 to 45 ft. lbs. (54 to 60 N·m).

IMPORTANT: The original pinion nut may be used for shimming, but must NOT be used in final assembly.

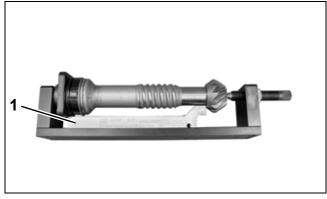

- Driveshaft bearing housing
- Thrust washer
- Thrust bearing
- Pinion

Select correct collar and shim gauge bar:

- Collar: P/N 328363
- Shim gauge bar: P/N 328366

Slide the collar onto the driveshaft with large end in contact with the bearing housing.

Insert the assembled driveshaft into the tool base and tighten preload screw against the driveshaft until groove on the spring-loaded plunger is flush with end of threads. Tighten locking ring on preload screw.


1. Collar 2.

Tool base

COA3566 DSC00326

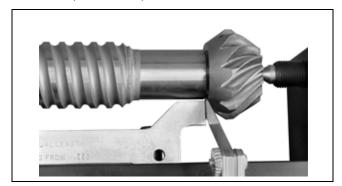
Rotate the driveshaft several revolutions to seat bearings.

Lay the tool base on its side. Place the shim gauge bar against guide pins of the tool base.

1. Shim gauge bar

005416

Check squareness of the bearing housing mounting surface by holding the shim gauge bar against the pinion while rotating just the bearing housing. Use a feeler gauge to measure clearance between the gauge bar and the bearing housing between each pair of screw holes. Replace the bearing housing and repeat check if variance is greater than 0.004 in. (0.010 mm).


Check squareness of the pinion to the driveshaft. Hold the shim gauge bar against the bearing housing (between the screw holes) while rotating just the driveshaft and pinion assembly. Measure clearance between the gauge bar and the pinion at several locations. If variance is greater than 0.002 in. (0.050 mm) replace the pinion or driveshaft, as necessary, and repeat check.

Subtract the average clearance measurement from 0.020 in. (0.508 mm) to determine the correct shim thickness required. Select the fewest number of shims to achieve the correct thickness.

Remove the driveshaft from the tool and add the required shims between the bearing housing and the thrust washer.

IMPORTANT: Use extreme care when removing bearing housing to avoid damaging the seals. Use Driveshaft Seal Protector, P/N 312403.

Check clearance again. The measurement between the gauge bar and pinion should be 0.020 in. (0.508 mm).

005417

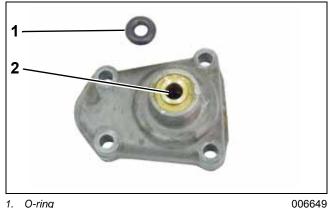
Remove the nut and pinion from the driveshaft. Discard the nut.

GEARCASE ASSEMBLY

Shift Housing, Gear, and **Propeller Shaft Installation**

Push shifter detent into farthest downward position. Tip the rear of the gearcase slightly downward to assist in the installation of the shaft assembly.

Be sure the thrust bearing and the thrust washer are in the proper position. Insert the shaft assembly fully into the gearcase while aligning shift housing pin with hole in forward end of gearcase housing.

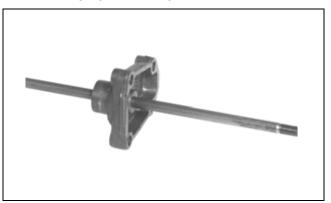

1. Pin

006648

Shift Rod Housing Installation

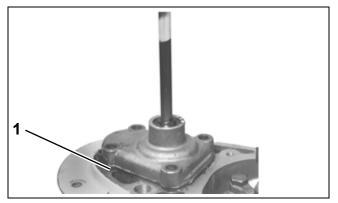
Lubricate a new shift rod cover O-ring with Triple-Guard grease. Install the O-ring into the shift rod cover.

IMPORTANT: Make sure O-ring is fully seated in groove.


O-ring

Groove

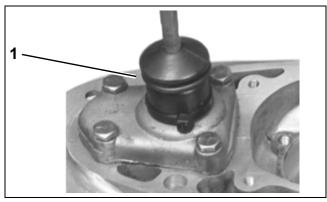
GEARCASE SERVICE, 40 – 65 HP MODELS


GEARCASE ASSEMBLY

Apply *Triple-Guard* grease to the threaded end of the shift rod and insert it through the cover. Turn the shift rod while pushing it through the cover to avoid damaging the O-ring.

COA3544

Apply Gasket Sealing Compound to both sides of a new shift rod cover gasket. Place the gasket on the gearcase. Thread the shift rod into the shifter detent about four turns.


1. Cover gasket

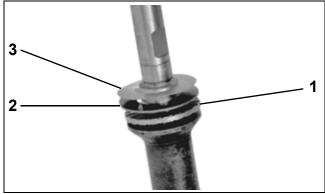
COA3545

Move shift rod from side to side while pushing on the propeller shaft to ensure proper alignment of the bearing housing locator pin into the pin hole in the gearcase.

Apply *Gasket Sealing Compound* to the threads of the shift rod cover screws. Tighten the screws to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

Place the cover seal on the shift rod cover.

1. Cover seal

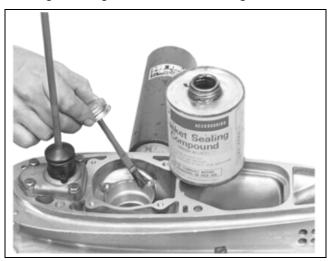

002514

Pinion Gear and Driveshaft Installation

Refer to **DRIVESHAFT SHIMMING** on p. 348 before proceeding.

Install new seals in driveshaft bearing housing. Refer to **Driveshaft Bearing Housing Service** on p. 345.

Place the driveshaft thrust bearing, thrust washer, and correct shim(s) on the driveshaft as shown.


1. Thrust bearing

COA3168

- 2. Thrust washer
- 3. Shim(s)

Lightly apply Gasket Sealing Compound to the gearcase area that contacts mounting flange of

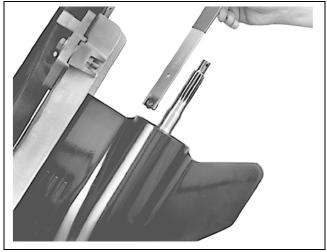
the driveshaft bearing housing. Do not coat inside bearing housing bore surface of the gearcase.


6207

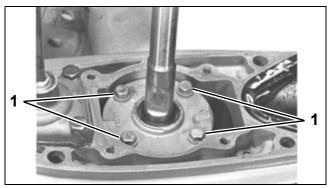
Adjust shift rod to move clutch dog as far forward as possible. Be sure excess grease is removed from the pinion bearing.

IMPORTANT: The inside taper of the pinion gear and the driveshaft taper MUST be completely free of grease. Clean the tapers with *Cleaning Solvent*. Use a shop towel free of grease and lint.

Place the pinion gear into the gearcase. Insert the driveshaft into the gearcase and through the pinion gear.


Using Driveshaft Seal Protector, P/N 312403, slide the driveshaft bearing housing onto the driveshaft and into position in the gearcase. Align the embossed word "FRONT" toward the shift rod. Do not install screws at this time.

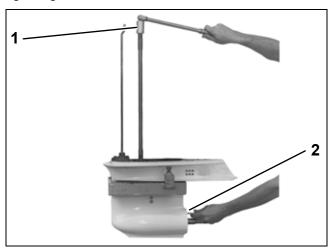
1. Seal protector


COA3130

Lightly coat the threads of a **new** pinion nut with outboard lubricant. Use Pinion Nut Starting Tool, P/N 320675, to install nut on the driveshaft. Turn the driveshaft by hand to thread the nut on to shaft.

33220

Apply *Gasket Sealing Compound* to the threads of the driveshaft bearing housing screws. Tighten screws **in stages** to a torque of 96 to 120 in. lbs. (11 to 14 N·m).

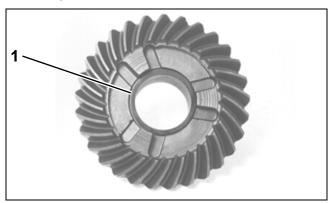

1. Driveshaft bearing housing screws

COA3671

GEARCASE SERVICE, 40 - 65 HP MODELS

GEARCASE ASSEMBLY

Use Driveshaft Holding Socket, P/N 334995, and an 11/16 in. open-end wrench, to tighten the pinion nut to a torque of 40 to 45 ft. lbs. (54 to 60s N·m). Pad handle of the wrench to prevent damage to gearcase.

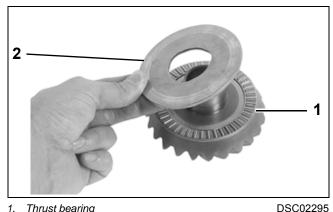


- 1. Holding socket
- 2. 11/16 Wrench

COA3573T

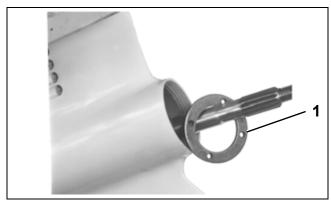
Propeller Shaft Bearing Housing and Gear Installation

Place the small thrust washer in recess of the reverse gear.



1. Small thrust washer

COA3597


Oil and install thrust bearing and larger thrust washer on hub of reverse gear. Slide the gear

assembly onto the propeller shaft until it engages the pinion gear.

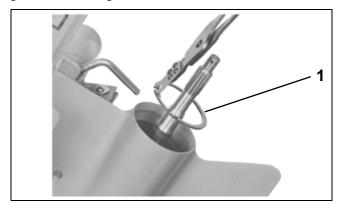
- Thrust bearing
 - Thrust washer

Slide the bearing housing retainer plate into position over the propeller shaft.

1. Retaining ring

COA3513

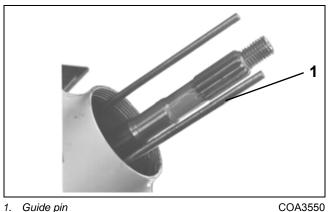
Using Retaining Ring Pliers, P/N 331045, install the two retaining rings.



CAUTION

Retaining rings are under extreme pressure during installation. Wear safety glasses and proceed with care to avoid unsnapping the ring from the pliers.

GEARCASE ASSEMBLY


Make sure the retaining rings are seated in the grooves in the gearcase.

1. Retaining ring

9438

Thread two Guide Pins, P/N 383175, into the retainer plate to align holes in the plate with holes in the propeller shaft bearing housing. Do not thread guide pins more than two turns into the retainer plate.

Guide pin

Install O-ring in groove in the bearing housing. Lightly apply Gasket Sealing Compound to the O-ring flange and aft support flange of the bearing housing. Do not allow sealer to contact either forward thrust surface or bearings in the housing.

Align the bearing housing on the guide pins with the word "UP" toward the top. Place the housing into gearcase and tap the housing with a soft face mallet to seat the O-ring.

Apply Gasket Sealing Compound to the threads and seals of the four propeller housing retaining screws. Install two of the screws into the bearing housing finger tight. Remove the guide pins and install the remaining two screws. Tighten all four screws to a torque of 120 to 140 in. lbs. (14 to 16 N·m).

To complete gearcase assembly, refer to:

- GEARCASE LEAK TEST on p. 331
- WATER PUMP SERVICE on p. 334
- SHIFT ROD ADJUSTMENT on p. 336
- GEARCASE REMOVAL AND INSTALLA-**TION** on p. 332
- Gearcase Lubricant on p. 85
- Propeller Hardware Installation on p. 70
- Trim Tab Adjustment on p. 76.

During break-in period of a reassembled gearcase, change the gearcase lubricant between 10 to 20 hours of operation.

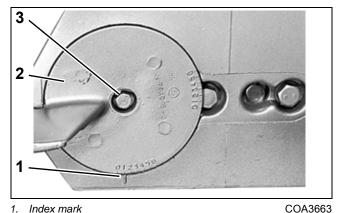
GEARCASE REMOVAL AND INSTALLATION

Gearcase Removal

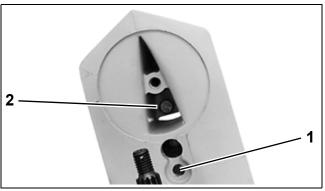
WARNING

To prevent accidental starting while servicing, twist and remove all spark plug leads.

During service, the outboard may drop unexpectedly. Avoid personal injury; always support the outboard's weight with a suitable hoist or the tilt support bracket during service.

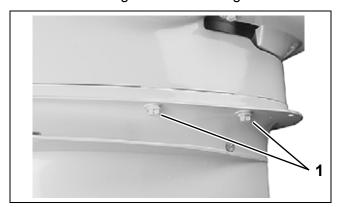

Remove pin and washer from shift rod lever to release the lower shift rod.

Shift rod screw


002013

Note where the index mark on the gearcase aligns with the index number of the adjustable trim tab so the trim tab can be installed in the same position. Remove the trim tab retaining screw and trim tab from the gearcase.

- Index mark
- Trim tab
- Trim tab retaining screw


Remove the forward screw with washer and recessed retaining screw.

- Forward screw
- Recessed screw

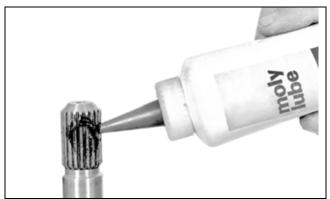
COA3139

Remove the four gearcase retaining screws.

Gearcase retaining screws

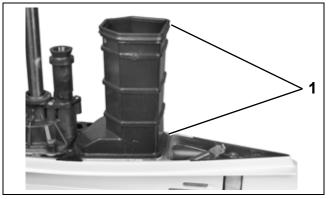
001990

Remove the gearcase assembly from the exhaust housing, being careful not to bend the shift rod or damage the water tube. The lower inner exhaust housing may come out with the gearcase.


Gearcase Installation

MARNING

During service, the outboard may drop unexpectedly. Avoid personal injury; always support the outboard's weight with a suitable hoist or the tilt support bracket during service.

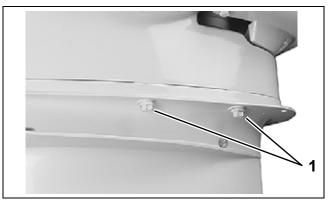

NOTICE Before installing gearcase, shift rod adjustment MUST be checked. Refer to SHIFT ROD ADJUSTMENT on p. 359.

Coat the driveshaft splines with *Moly Lube*. DO NOT coat top surface of the driveshaft because lubricant may prevent seating of the driveshaft in the crankshaft.

30385

Apply *Adhesive 847* to the lower exhaust housing seals' inner surfaces. Place two new seals on the housing. Apply *Triple-Guard* grease to the seals' outer surfaces and place the housing on the gearcase.

1. Lower exhaust seals


001985

Apply *Gel-Seal II* to gearcase mating surface pads on exhaust housing. Slide the gearcase into place, making sure:

- Driveshaft engages the crankshaft.
- Water tube enters the water pump.
- Lower inner exhaust housing installs correctly.
- Shift rod does not turn and is positioned properly in shift shaft connection area.

Apply *Gasket Sealing Compound* to threads of the gearcase retaining screws. Tighten the screws to a torque of:

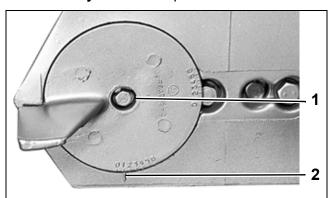
- 3/8 in. screws 26 to 28 ft. lbs. (35 to 38 N·m)
- **7/16 in.** screws 40 to 50 ft. lbs. (54 to 68 N·m)

1. 3/8 in. screws

001990

7/16 in. screw
 3/8 in screw

COA3139


Apply Gasket Sealing Compound to threads of the trim tab screw. Install and align the trim tab with the index marks noted prior to disassembly. Tighten the trim tab screw to a torque of 35 to 40

13

GEARCASE SERVICE, 75 – 90 HP MODELS

WATER PUMP SERVICE

ft. lbs. (47 to 54 N·m). For adjustment, refer to **Trim Tab Adjustment** on p. 76.

Trim tab screw
 Index mark

COA3663

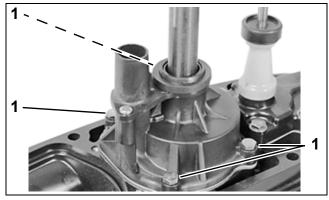
Place the shift rod in the shift rod lever. Install the retaining pin and washer. Tighten pin to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

1. Shift rod screw

002013

A

WARNING


To prevent loss of operator control, check for proper shifting operation and adjust, if necessary.

IMPORTANT: During break-in period of a reassembled gearcase, change the gearcase lubricant between 10 to 20 hours of operation.

WATER PUMP SERVICE

Disassembly

Rotate the driveshaft counterclockwise to unlock the impeller key. Remove the four impeller housing screws.

1. Screws 31998

Slide the water pump off the driveshaft. Remove the impeller drive key, O-ring, impeller plate, and gasket. Discard the gasket.

O-ring
 Impeller plate

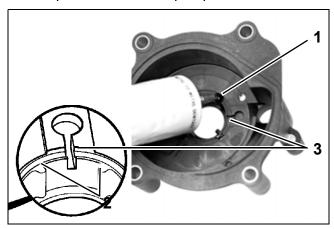
DSC02328

Remove all the parts from the housing.

Inspection

Check impeller for overheating, hub separation, and other wear or damage.

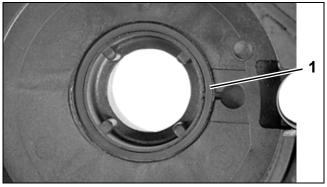
Check liner and wear plate for scoring, distortion, and impeller material transfer.


Inspect the housing for cracks or melting.

Make sure gasket surface is clean and smooth.

Assembly

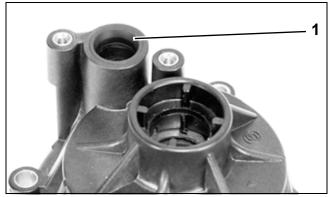
Apply a drop of *Adhesive 847* in the seal ring groove at each of the four ribs.


IMPORTANT: Do not allow any sealer to get into the air bleed groove in the impeller housing. If this groove is blocked by adhesive, the pump will lose its prime and will not pump water.

- 1. Seal ring groove
- 2. Ribs
- 3. Air bleed groove

2311 DR1185

Install the O-ring in groove in the impeller housing.

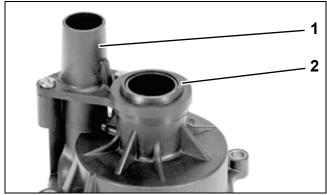

1. O-ring

34814

Lightly coat the exterior rim of the impeller cup with *Gasket Sealing Compound*. Install the cup in the impeller housing. The cup locks in place in the housing with a square index tab.

Make sure vent hole in impeller cup is open.

Install the water tube grommet with the inside taper facing up.



1. Water tube grommet

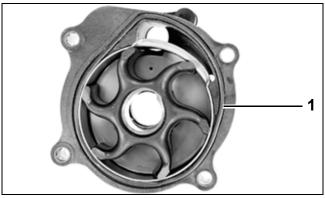
32000

Install the impeller housing cover and tighten screws to a torque of 24 to 36 in. lbs. (3 to 4 N·m).

Apply *Adhesive 847* to flat side of the impeller housing grommet. Install the grommet, flat side down.

Impeller housing cover

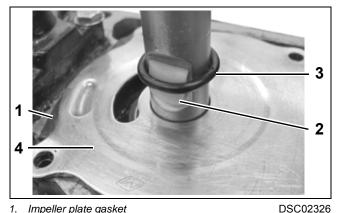
32001


2. Impeller housing grommet

Lightly coat the inside of the liner with *Triple-Guard* grease. With a counterclockwise rotation, install the impeller into the liner with the slot for the impeller key facing out.

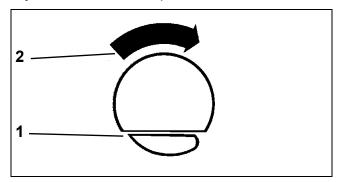
GEARCASE SERVICE, 75 – 90 HP MODELS

WATER PUMP SERVICE


Apply a thin bead of Adhesive 847 in the seal groove, and install the special shaped O-ring seal.

O-ring 34815

Apply Gasket Sealing Compound to both sides of a new impeller plate gasket. Install the gasket and impeller plate.

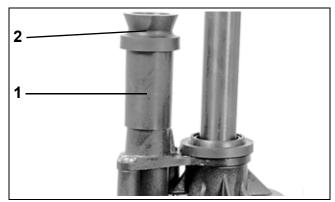

Apply Triple-Guard grease to a new impeller Oring. Slide the O-ring down the driveshaft and half way over installed impeller key to temporarily hold key in place.

- Impeller plate gasket 1.
- Impeller plate 2.
- O-ring
- Drive key

The sharp edge of the key is the leading edge in clockwise rotation.

Slide the water pump down the driveshaft. Align impeller slot with the impeller key. Rotate the driveshaft to engage the key with the impeller, and slide water pump down over key. Be sure impeller key does not fall out of position.

- Sharp edge of drive key
- Direction of driveshaft rotation

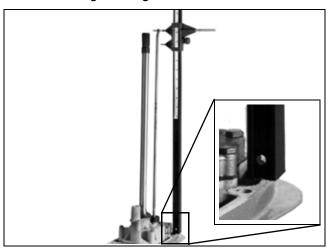

CO2995

NOTICE Make sure the impeller engages the impeller key. Serious powerhead damage will result if impeller key is not in place.

Align the impeller housing with the gearcase. Apply Gasket Sealing Compound to threads of the four impeller housing screws. Install the screws and tighten to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

25 IN. MODELS

Place water tube spacer with grommet on the impeller housing cover.


- 25 in. Model Water Tube Spacer
- Spacer
- 2. Grommet

32728

NOTICE Before installing gearcase, shift rod adjustment MUST be checked. Refer to SHIFT ROD ADJUSTMENT on p. 359.

SHIFT ROD ADJUSTMENT

Check the shift rod height from the shift rod hole to the surface of the gearcase using Universal Shift Rod Height Gauge, P/N 389997.

COA6166

With the gearcase in NEUTRAL, rotate the shift rod up or down as necessary for correct adjustment. Once correct height is achieved, rotate rod one half turn or less to direct offset forward.

IMPORTANT: The NEUTRAL detent is a twostep design. Make sure the NEUTRAL detent ball is in the center step before checking shift rod height.

Shift Rod Heights

Model	Type	Height	
20 in. (L)	"S"	21.25 in. ± One-Half Turn	
25 in. (X)	"O"	26.25 in. ± One-Half Turn	

GEARCASE DISASSEMBLY

Pre-Disassembly Inspection

A

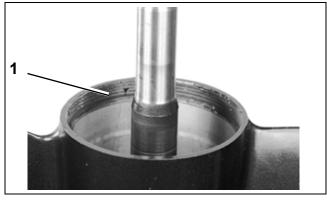
WARNING

Wear safety glasses to avoid personal injury, and set compressed air pressure to less than 25 psi (172 kPa).

IMPORTANT: Clean and inspect all parts during disassembly. Replace any damaged parts, seals, O-rings, and gaskets.

Remove the propeller and mounting hardware.

Drain and inspect oil as described in **Gearcase Lubricant** on p. 85.


Remove gearcase. Refer to **GEARCASE REMOVAL AND INSTALLATION** on p. 354.

Remove water pump. Refer to **WATER PUMP SERVICE** on p. 356.

Before disassembling the gearcase, examine the following:

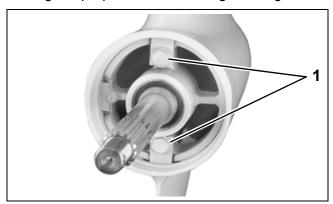
- Gearcase Housing Check for visible damage to skeg, strut, anti-ventilation plate, bullet, and mating surface. Check seal areas for visible signs of lubricant leakage.
- Propeller Shaft Check for bent or damaged shaft. Check for twisted splines and damaged threads.
- Shift Rod Check for misadjusted, bent, or binding rod. A misadjusted shift rod height can cause shift difficulty, loss of boat and outboard control, and gearcase damage.

 Hydrostatic Seal Grooves — Must be in good condition to help prevent propeller ventilation.

1. Hydrostatic seal grooves

4557

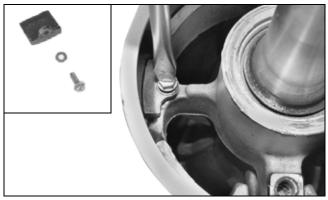
 Gearcase Anodes — If anodes have eroded to two-thirds their original size, they must be replaced.


1. Gearcase anode

14161

- **Drive Shaft** Check splines for visible damage, twisting and wear. Severe spline wear indicates the exhaust housing or gearcase has been distorted, possibly by impact damage.
- Water Intake Screens Check for damage and blockage. If screens cannot be cleaned, they must be replaced. Different screens are available and should not be mixed. Refer to correct model parts manual for listing and description.

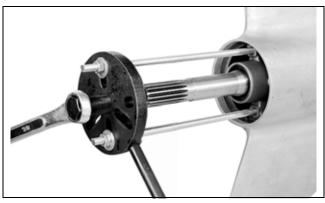
Propeller Shaft Bearing Housing Removal


Remove the two screws, washers, and retainers holding the propeller shaft bearing housing.

1. Retainer tab screws

001989

Remove wedge, screw, and washer ("O" Type).



DSM02291 DSC02361

Remove the propeller shaft bearing housing from the gearcase using the following:

- Puller body, screw, and handle from Universal Puller Set, P/N 378103.
- Two 5/16-18 x 11 in. (279 mm) threaded rods, two large 5/16 in. I.D. flat washers, and two 5/16-18 nuts (obtain locally).

Assemble components and pull the bearing housing from the gearcase.

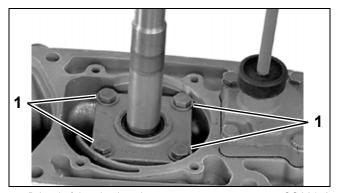
22775

Remove the thrust washer, thrust bearing, and reverse gear from gearcase.

Pinion Gear and Driveshaft Removal

Adjust the shift rod to move the clutch dog as far forward as possible. This will help ease removal of the pinion nut.

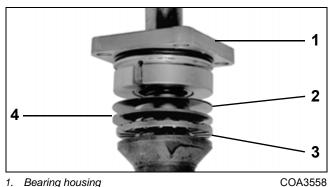
Use Driveshaft Holding Socket, P/N 311875, Pinion Nut Holder, P/N 334455, and Wrench Retainer, P/N 341438 to loosen and remove the pinion nut from the bottom of the driveshaft. Pad handle of holder to prevent damage to gearcase.



- . Holding socket
- Pinion holder
- 3. Retainer

42229

GEARCASE DISASSEMBLY


Remove the four driveshaft bearing housing screws.

Driveshaft bearing housing screws

COA3153

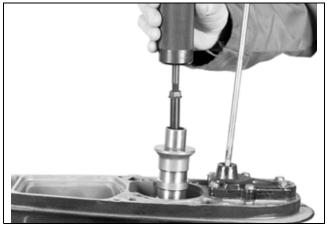
Remove the driveshaft from the gearcase. The bearing housing, shims, thrust bearing, and thrust washer will come out with the driveshaft.

- Bearing housing
- Shims
- Thrust bearing
- Thrust washer

If driveshaft cannot be removed, refer to Locked Driveshaft Removal on p. 340.

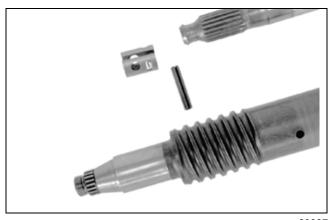

Remove the pinion gear from the gearcase.

COA3159

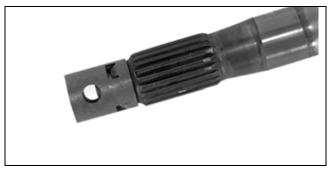

Locked Driveshaft Removal

The driveshaft to pinion taper is a locking taper. If necessary, use Driveshaft Puller, P/N 390706, and Backing Plate, P/N 325867, to break the lock. Install the tools as shown by clamping them around the driveshaft. Alternately tighten the two vertical screws against the backing plate inserted between the puller and the gearcase until the driveshaft pops loose from the pinion.

- Drive shaft 1.
- Puller
- Backing plate


If upper driveshaft becomes separated from lower Lower Driveshaft driveshaft. use P/N 342681, to remove. Install puller into lower driveshaft and turn 90° to position hook under pin in driveshaft. Thread Slide Hammer, P/N 391008, into puller and remove driveshaft.

46905

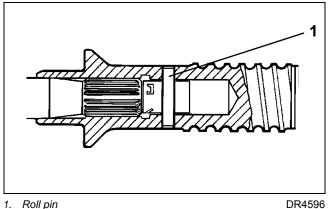

Driveshaft Service

To separate the upper driveshaft (if needed) from the lower driveshaft, remove the roll pin. Replace the damaged component.

29337

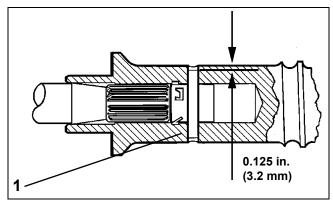
To assemble the driveshaft, install **new** driveshaft retainer into the groove of the upper driveshaft.

29338


Install the upper driveshaft into the lower driveshaft, aligning the holes in the driveshaft retainer and the lower driveshaft.

29330

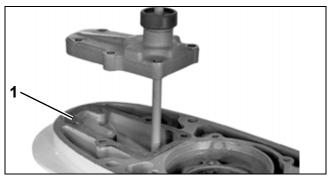
"S" Type Gearcases


Install the roll pin flush.

1. Roll pin

"O" Type Gearcases

Install the roll pin to the specified dimension.



DR4610 1. Roll pin

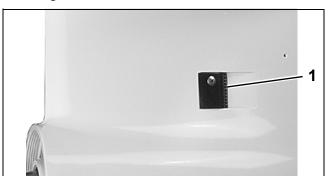
Shift Housing, Gear and Propeller Shaft Removal

Push down on the shift rod. This will move the detent lever downward to clear the inside of the gearcase when the shaft assembly is pulled out. Unscrew the shift rod from the detent lever. Remove screws, cover, and shift rod from the gearcase.

Discard the cover gasket. Remove and discard the shift rod O-ring from inside of cover.

Cover gasket

COA3141

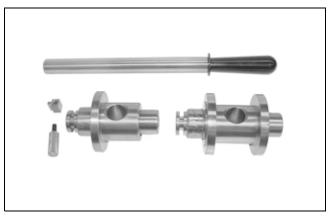

Remove propeller shaft assembly from gearcase.

COA3149

Water Intake Screens

Remove and clean water intake screens. Replace if damaged.

1. Water intake screen


001991

GEARCASE HOUSING INSPECTION

Thoroughly clean gearcase housing to remove all dirt and debris prior to inspection. Inspect pinion bearing and forward thrust surface of gearcase housing.

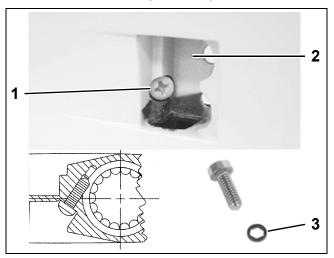
Use Gearcase Alignment Gauge Kit, P/N 5006349 to check the condition of gearcase housing prior to reassembly. Refer to instructions provided with kit. Use additional Gauging Head as follows:

P/N 352879, for "S" Type gearcases.

004315

IMPORTANT: DO NOT force gauging shaft into alignment hole. Shaft MUST slide easily into hole of gauging head. If shaft does not slide into hole, gearcase housing is damaged and **must** be replaced.

1. Gauging shaft


00434

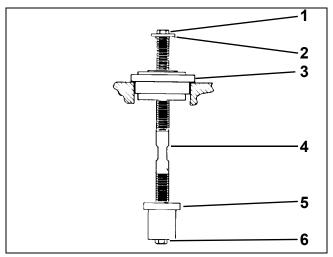
SHIFTER, BEARING AND SEAL SERVICE

SHIFTER, BEARING AND **SEAL SERVICE**

Pinion Bearing Removal

Remove pinion bearing retaining screw.

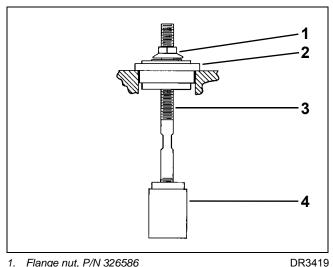
- Pinion bearing retaining screw
- Water screen pocket
- Seal


DSC02370 DRC7416 DSC02313

824163

Remover/Installer, Pinion Bearing P/N 5005927, in the gearcase as follows:

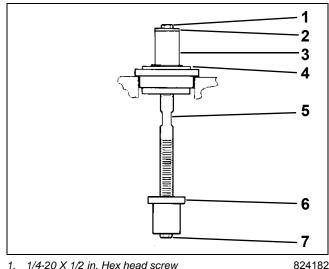
"S" Type Gearcases


Use a mallet to drive the bearing from the housing.

- 1. 1/4-20 x 1/2 in. Hex Head Screw
- 1 in. O.D. Flat Washer
- Plate, P/N 391260
- 4. Rod, P/N 326582
- 5. Installer/Remover, P/N 326574
- 6. 1/4-20 x 1 1/4 in. Hex Head Screw

"O" Type Gearcases

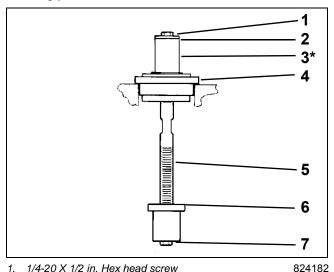
Use a 7/8 in. wrench to hold the remover in place. Use a 3/4 in. wrench to turn flange nut clockwise. Draw the bearing up from the housing.



- Flange nut, P/N 326586
- Plate, P/N 391260
- Rod, P/N 326582
- Remover, P/N 326579

Pinion Bearing Installation

Assemble the following components of Pinion Bearing Remover and Installer, P/N 5005927, as


"S" Type Gearcases

- 1/4-20 X 1/2 in. Hex head screw
- 1 in. O.D. Flat washer
- Spacer, P/N 341437
- Plate, P/N 391260
- Rod, P/N 326582
- Installer/Remover, P/N 326574 1/4-20 X 1 1/4 in. Hex head screw

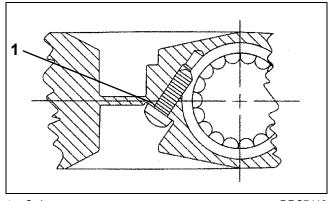
SHIFTER, BEARING AND SEAL SERVICE

"O" Type Gearcases

- 1. 1/4-20 X 1/2 in. Hex head screw
- 1 in. O.D. Flat washer
- 3. Spacer, P/N 326584
- 4. Plate and Bearing P/N 391260
- 5. Rod P/N 326582
- 6. Installer/Remover, P/N 350958
- 7. 1/4-20 X 1 1/4 in. Hex head screw

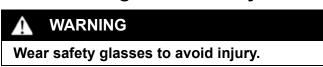
IMPORTANT: Spacers are different sizes and cannot be interchanged.

Apply Needle Bearing grease to the needle bearings and insert them into the bearing case ("O" Type gearcases).

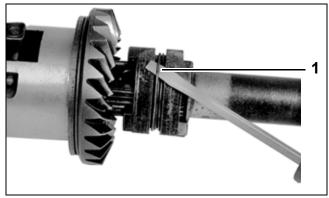

Place the bearing on the installer tool with the lettered side of the bearing facing the top of the gearcase. Use Needle Bearing grease to hold the bearing on the tool.

IMPORTANT: The pinion bearing is tapered so that, when installed correctly, its shape compensates for stresses in the gearcase and allows full bearing contact. Whenever a gearcase is disassembled, the pinion bearing should be checked to ensure that it has been installed with the lettering facing up.

Insert the tool with the bearing into the gearcase. Drive the bearing into the gearcase until the washer on the tool contacts the spacer.

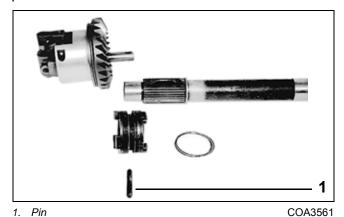

Remove the tool.

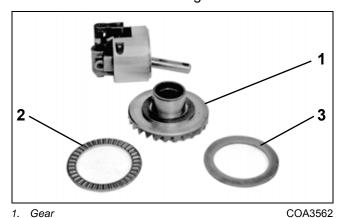
Place a new O-ring on the pinion bearing retaining screw. Apply Gasket Sealing Compound to Oring. Apply Nut Lock to screw threads. Install the screw and tighten to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).


O-ring DRC7416

Shift Housing Disassembly

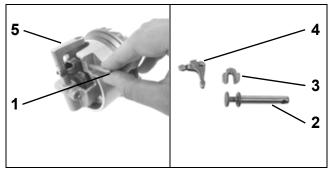
IMPORTANT: The shift housing and bearing are serviced as an assembly. If either are worn or damaged, replace the complete assembly.


Insert a suitable tool under one end of the clutch dog spring and remove it from its groove by unwrapping it from around the clutch dog. Discard the spring.


1. Clutch dog spring

COA3560

Push the pin out of the clutch dog. Remove all parts.

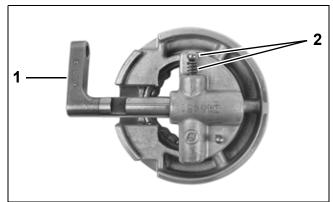

Remove the gear, thrust bearing, and thrust washer from the shift housing.

2. Thrust bearing

Thrust washer

Remove the shift lever pin from the housing. Remove shift shaft, cradle and shift lever. Move shifter detent as needed to help ease removal of parts.

1. Shift lever pin


DSC02449 DSC02489

- Shift shaft
 Cradle
- 4. Shift lever
- 5. Shifter detent

♠ WARNING

Wear safety glasses to avoid personal injury. The detent ball and spring and come out with great force.

Wrap the housing with a shop cloth to catch ball and spring. Rotate the shifter detent 90° in either direction, then pull the detent out of the housing.

Shifter detent
 Ball and spring

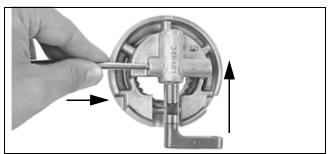
DSC02518

Remove the detent ball and spring.

Remove needle bearings from bearing housing for cleaning and inspection ("O" Type).

SHIFTER, BEARING AND SEAL SERVICE

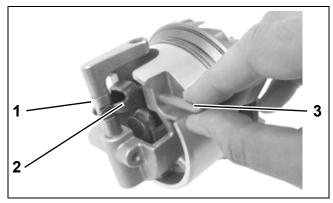
Shift Housing Assembly


IMPORTANT: Clean and inspect all parts before beginning assembly procedures. Replace any damaged parts.

Lightly coat the detent ball and spring with *Needle Bearing* grease. Insert the spring in the housing, then the ball.

4518

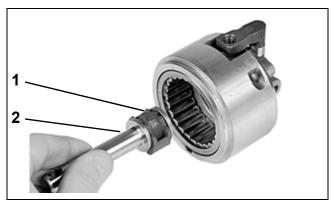
Insert shifter detent at 90° angle into the housing as shown, while depressing the ball and spring with a suitable tool. Once the shifter detent is past the ball, remove the tool and position detent to engage NEUTRAL position.


DSC02506

Thoroughly grease 25 needle bearings with *Needle Bearing* grease and place in the bearing case ("O" Type gearcases).

4520

With shifter detent in NEUTRAL, install arms of shift lever into detent slots. Align the pivot holes and insert the retaining pin. Push shifter detent down.


1. Shifter detent

2. Shift lever

3. Pin, shift lever

DSC02449

Rest the cradle on the shift shaft.

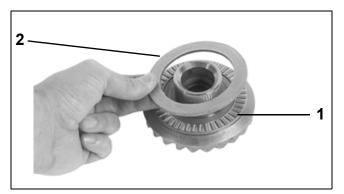
TYPICAL

1. Cradle

2. Shift shaft

4512

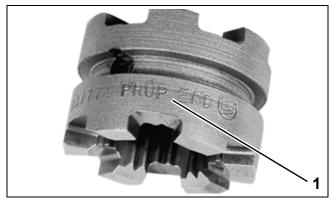
SHIFTER, BEARING AND SEAL SERVICE


Place the shift lever arms into the recesses of the shift cradle. Pull shifter detent back up to NEU-TRAL position to hold the cradle and shaft in place.

001219

Coat thrust bearing and thrust washer with *Needle Bearing* grease. Place the bearing on the back of the gear. Set the washer on top of the thrust bearing. Insert the gear, bearing, and washer into the bearing housing.

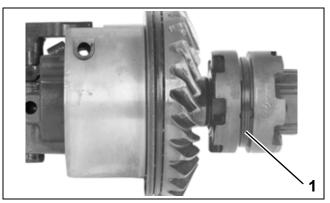
NOTICE Bearing and washer must be installed in the correct order.



Thrust bearing
 Thrust washer

DSC02297

Align holes in the clutch dog with slot in the propeller shaft. Install the clutch dog on the shaft with "PROP END" facing rear of the shaft.


NOTICE The clutch dog is not symmetrical. If installed backward, it will not fully engage and will immediately damage itself and the gears.

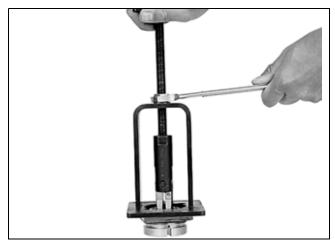
1. "PROP END"

COB7581

Slide the propeller shaft onto the shift shaft, align the hole in the shaft with the hole in the clutch dog, install the pin and then, a **new** clutch dog retaining spring. Place three coils over each end of the pin, MAKING SURE NONE OF THE COILS OVERLAP OR ARE LOOSE.

1. Retaining spring

COB3101


SHIFTER, BEARING AND SEAL SERVICE

Driveshaft Bearing Housing Service

The driveshaft bearing is not serviceable. Replace the bearing housing assembly if the bearing is worn or damaged. Also, inspect the driveshaft bearing surface if the bearing is damaged.

Seal Removal

Remove the driveshaft bearing housing seals using Puller Bridge, P/N 432127, and Large Puller Jaws, P/N 432129. Discard the seals.

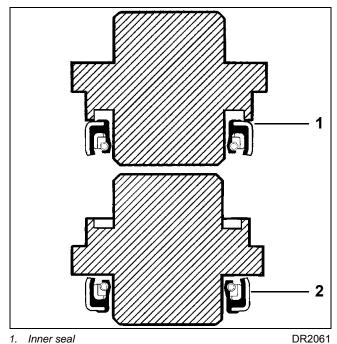
Remove and discard the O-ring from the bearing housing.

Clean the bearing housing in solvent to remove sealer from the seal bore and the O-ring groove.

Seal Installation

Lightly apply Gasket Sealing Compound to a new O-ring. Install the O-ring in top groove of the bearing housing. Do not allow sealant in oil passage.

NOTICE Do not install the O-ring in the bearing housing's bottom groove. The bottom groove is an oil passage. Gearcase damage could result.



O-ring (top groove) Oil passage

14156

Apply Gasket Sealing Compound to casings of new seals before installing.

Use Seal Installation Tool, P/N 330268 to install new seals back to back in bearing housing. Install inner seal with lip facing toward bearing housing, then the outer seal with lip facing away from bearing housing. Apply Triple-Guard grease to seal lips.

Inner seal

DR2062

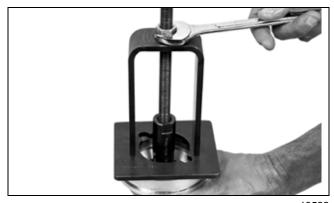

Outer seal

SHIFTER, BEARING AND SEAL SERVICE

Propeller Shaft Bearing Housing Service

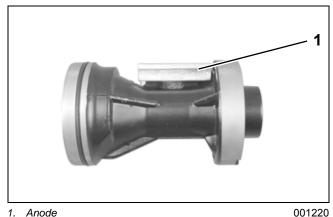
Rear Seal Removal

Remove seals using Puller Bridge, P/N 432127, and Small Puller Jaws, P/N 432131. Place the plate on top of the housing to support the bridge. and tighten jaws securely behind the inner seal.



13520

Bearing Removal


IMPORTANT: Inspect bearings in place. If a bearing is removed for any reason, it must be discarded.

Remove either bearing using Puller Bridge, P/N 432127, and Large Puller Jaws, P/N 432129. Place the puller plate on top of the housing to support the bridge, and tighten jaws securely behind the bearing.

13522

Inspect the bearing housing anode. Replace anode if it is reduced to two-thirds of original size. Tighten screws to a torque of 108 to 132 in. lbs. (12 to 15 N·m).

1. Anode

Discard the bearing housing O-ring. Clean the housing and bearings in solvent and dry thoroughly. If bearings were not replaced, rotate the needles to check for freedom of movement.

Inspect O-ring groove. Sand off any sharp edges that might cut O-ring. Remove any nicks or burrs on front of bearing housing.

1. O-ring groove

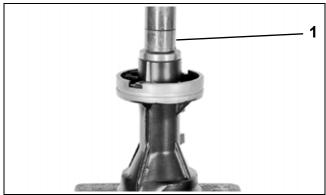
DSC02291

SHIFTER, BEARING AND SEAL SERVICE

Bearing Installation

Oil, then install new bearings in bearing housing.

Place the **lettered end** of the bearing case on the bearing installer, then press the bearing into the housing until the tool seats. When installed, the lettered end of the bearing should be visible.


Bearing installation tool:

- P/N 326562 "S" Type gearcases
- P/N 339750 "O" Type gearcases

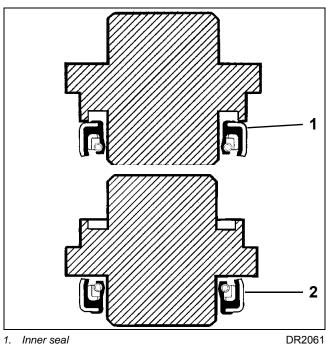
Forward Bearing 1. Bearing installation tool

29967

Rear Bearing 1. Bearing installation tool

44237

Rear Seal Installation


Apply Gasket Sealing Compound to metal casings of the seals before installing.

Use Seal Installation Tool to install new seals back to back in bearing housing.

Seal installation tool:

- P/N 326551 "S" Type gearcases
- P/N 336311 "O" Type gearcases

Install inner seal with lip facing toward the bearing housing, then outer seal with lip facing away from the bearing housing.

Outer seal

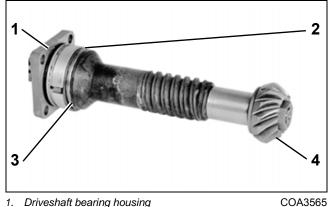
DR2062

Apply Triple-Guard grease to seal lips.

DRIVESHAFT SHIMMING

NOTICE If a new pinion gear is needed, replace gear set before shimming.

Pinion gear backlash is achieved by using shims between the driveshaft bearing housing and the thrust washer. When installing a new thrust bearing or washer, bearing housing, pinion, or driveshaft, it is necessary to properly shim the assembly to restore factory clearance.


Use Driveshaft Shimming Tool, P/N 5005925 (replaces P/N 393185).

Shim gauge bars are precision made and should be handled carefully. The length of each bar is stamped near the part number. This dimension is 0.020 in. (0.508 mm) shorter than the actual shimmed length of the driveshaft.

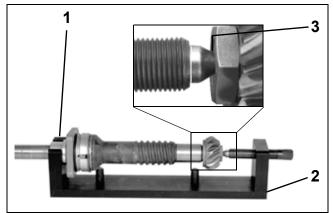
IMPORTANT: Clean pinion and driveshaft before assembly. Replace any damaged parts.

Assemble the driveshaft bearing housing, thrust washer, thrust bearing, and pinion onto the driveshaft. Use Driveshaft Seal Protector, P/N 318674, when installing or removing the bearing housing.

Lightly coat the threads of the pinion nut with outboard lubricant and tighten to a torque of 100 to 110 ft. lbs. (136 to 149 N·m).

- Driveshaft bearing housing
- Thrust washer
- Thrust bearing
- Pinion

IMPORTANT: The original pinion nut may be used for shimming, but must NOT be used in final assembly.

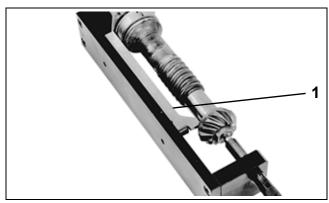

Select correct collar and shim gauge bar:

Collar: P/N 341440

Shim gauge bar: P/N 328367

Slide the collar onto the driveshaft with large end in contact with the bearing housing.

Insert the assembled driveshaft into the tool base and tighten preload screw against the driveshaft until groove on the spring-loaded plunger is flush with end of threads. Tighten locking ring on preload screw.


Collar Tool base

Groove

COA3566 DSC00326

Rotate the driveshaft several revolutions to seat bearings.

Lay the tool base on its side. Position the shim gauge bar against guide pins of the tool base.

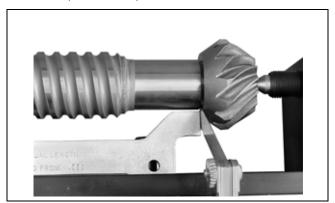
Shim gauge bar

COA3567

Check squareness of the bearing housing mounting surface by holding the shim gauge bar against the pinion while rotating just the bearing housing. Use a feeler gauge to measure clearance

GEARCASE ASSEMBLY

between the gauge bar and the bearing housing between each pair of screw holes. Replace the bearing housing and repeat check if variance is greater than 0.004 in. (0.010 mm).

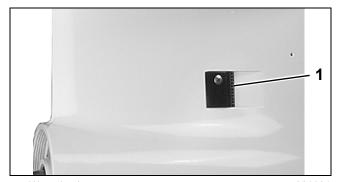

Check squareness of the pinion to the driveshaft. Hold the shim gauge bar against the bearing housing (between the screw holes) while rotating **just the driveshaft and pinion assembly**. Measure clearance between the gauge bar and the pinion at several locations. If variance is greater than 0.002 in. (0.050 mm) replace the pinion or driveshaft, as necessary, and repeat check.

Subtract the average clearance measurement from 0.020 in. (0.508 mm) to determine the correct shim thickness required. Select the fewest number of shims to achieve the correct thickness.

Remove the driveshaft from the tool and add the required shims between the bearing housing and the thrust washer.

IMPORTANT: Use extreme care when removing bearing housing to avoid damaging the seals. Use Driveshaft Seal Protector, P/N 318674.

Check clearance again. The measurement between the gauge bar and pinion should be 0.020 in. (0.508 mm).


005417

Remove the nut and pinion from the driveshaft. Discard the nut.

GEARCASE ASSEMBLY

Water Intake Screens

Install water intake screens. Tighten screws to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

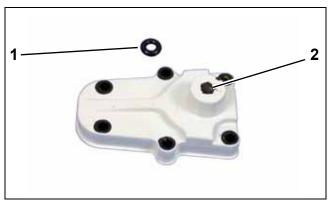

1. Water intake screen

001991

Shift Housing, Gear, and Propeller Shaft Installation

Push shifter detent into farthest downward position. Tip the rear of the gearcase slightly downward to assist in the installation of the shaft assembly.

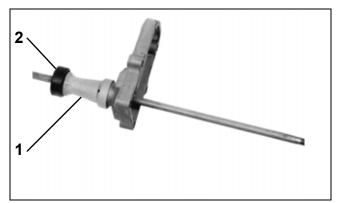
Be sure the thrust bearing and the thrust washer are in the proper position. Insert the shaft assembly fully into the gearcase while aligning shift housing pin with hole in forward end of gearcase housing.



005427

Shift Rod Housing Installation

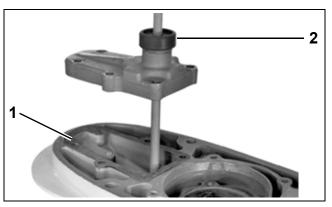
Lubricate a new shift rod cover O-ring with *Triple-Guard* grease. Install the O-ring into the shift rod cover.


IMPORTANT: Make sure O-ring is fully seated in groove.

1. O-ring 2. Groove 006780

Place the shift rod grommet on the shift rod.

Install shift rod spacer under grommet on 25 in. models.

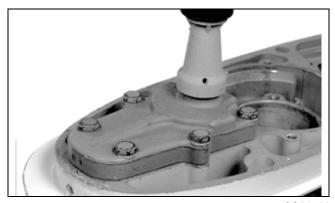

Grommet
 Shift rod spacer

COA3568

Apply *Triple-Guard* grease to the threaded end of the shift rod and insert it through the cover. Turn the shift rod while pushing it through the cover to avoid damaging the O-ring.

Apply *Gasket Sealing Compound* to both sides of a new shift rod cover gasket. Place the gasket on the gearcase.

Thread the shift rod into the shifter detent about four turns.



Cover gasket
 Grommet

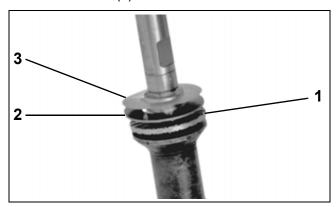
COA3141

Move shift rod from side to side while pushing on the propeller shaft to ensure proper alignment of the bearing housing locator pin into the pin hole in the gearcase.

Apply *Gasket Sealing Compound* to the threads of the shift rod cover screws. Tighten the screws to a torque of 60 to 84 in. lbs. (7 to 9.5 N·m).

COA3569

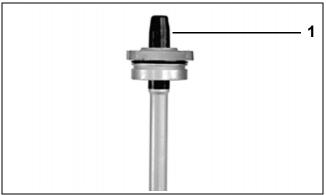
Refer to SHIFT ROD ADJUSTMENT on p. 359.


GEARCASE ASSEMBLY

Pinion Gear and Driveshaft Installation

Refer to **DRIVESHAFT SHIMMING** on p. 373 before proceeding.

Install new seals in driveshaft bearing housing. Refer to **Driveshaft Bearing Housing Service** on p. 345.


Place the driveshaft thrust bearing, thrust washer, and correct shim(s) on the driveshaft as shown.

- 1. Thrust bearing
- Thrust washer
- 3. Shim(s)

COA3168

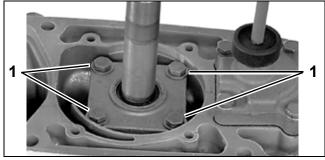
Using Driveshaft Seal Protector, P/N 318674, slide the driveshaft bearing housing onto the driveshaft and into position in the gearcase.

1. Seal protector

COA3130

Adjust shift rod to move clutch dog as far forward as possible. Be sure excess grease is removed from the pinion bearing.

IMPORTANT: The inside taper of the pinion gear and the driveshaft taper MUST be completely free of grease. Clean the tapers with *Cleaning Solvent*. Use a shop towel free of grease and lint.

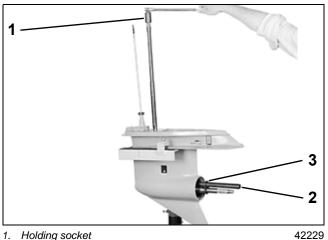

Place the pinion gear into the gearcase. Insert the driveshaft into the gearcase and through the pinion gear.

Lightly coat the threads of a **new** pinion nut with outboard lubricant. Use Pinion Nut Starting Tool, P/N 342216, to install nut on the driveshaft. Turn the driveshaft by hand to thread the nut on to shaft.

42230

Apply *Gasket Sealing Compound* to the threads of the driveshaft bearing housing screws. Tighten screws **in stages** to a torque of 120 to 144 in. lbs. (13.5 to 16.5 N·m).

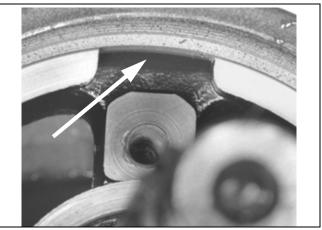
1. Driveshaft bearing housing screws


COA3153

Lightly apply Gasket Sealing Compound to a new

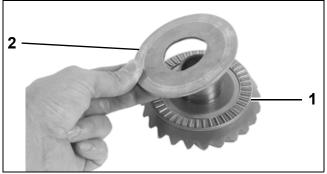
bearing housing O-ring. Install O-ring in groove in

GEARCASE ASSEMBLY


Use Driveshaft Holding Socket, P/N 311875, Pinion Nut Holder, P/N 334455, and Wrench Retainer, P/N 341438, to tighten the pinion nut to a torque of 100 to 110 ft. lbs. (136 to 149 N·m). Pad handle of holder to prevent damage to gearcase.

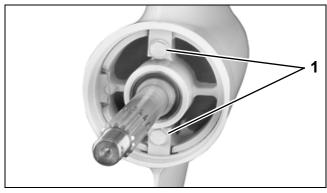
- Holding socket
- Pinion holder
- Retainer

the housing. Install housing into gearcase. Align screw holes with retainer slots in gearcase.


Housing must be completely seated to install retainer tabs.

Retainer Tab Notch

Propeller Shaft Bearing Housing and Gear Installation

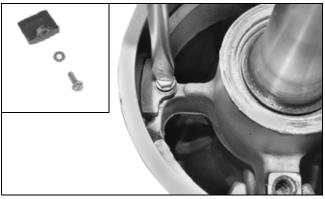

Oil and install thrust bearing and thrust washer on hub of reverse gear. Slide the gear assembly onto the propeller shaft until it engages the pinion gear.

- Thrust bearing
- Thrust washer

DSC02295

Install two retainers, washers and screws. Apply Ultra Lock to threads and tighten screws to a torque of 18 to 20 ft. lbs. (24 to 27 N·m).

Retainer tab screws


001989

GEARCASE ASSEMBLY

"O" Type Gearcases

Loosen retainer screws 1/4 turn.

Install wedge, screw, and washer. Apply *Ultra Lock* to threads and tighten screw to a torque of 15 to 20 in. lbs. (1.7 to 2.3 N·m).

DSM02291 DSC02361

Re-tighten two retainer screws to 18 to 20 ft. lbs. $(24 \text{ to } 27 \text{ N} \cdot \text{m}).$

Confirm that torque on the wedge screw is 15 to 20 in. lbs. $(1.7 \text{ to } 2.3 \text{ N} \cdot \text{m})$.

To complete gearcase assembly, refer to:

- GEARCASE LEAK TEST on p. 331
- WATER PUMP SERVICE on p. 356
- SHIFT ROD ADJUSTMENT on p. 359
- GEARCASE REMOVAL AND INSTALLA-TION on p. 354
- Gearcase Lubricant on p. 85
- Propeller Hardware Installation on p. 70
- Trim Tab Adjustment on p. 76.

During break-in period of a reassembled gearcase, change the gearcase lubricant between 10 to 20 hours of operation.

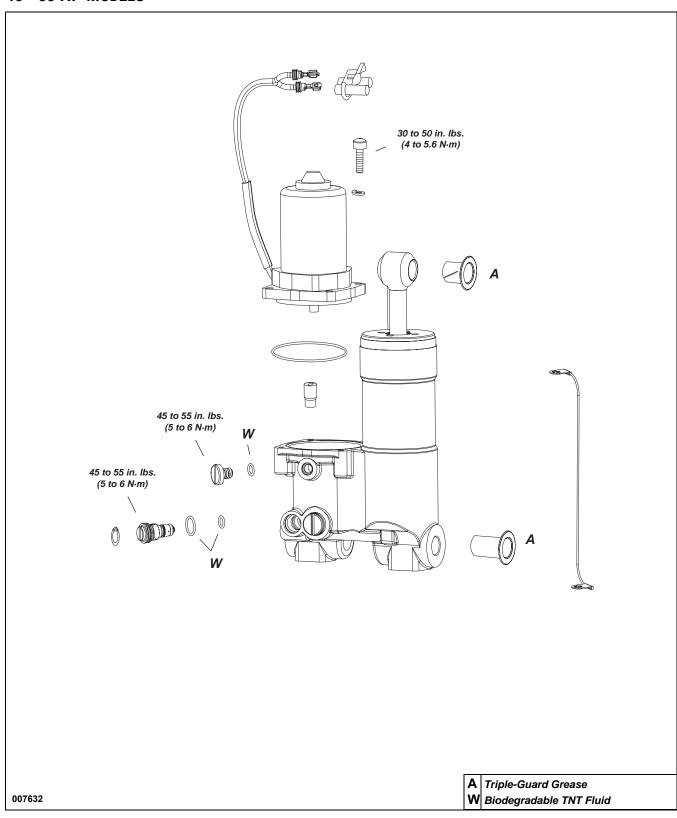
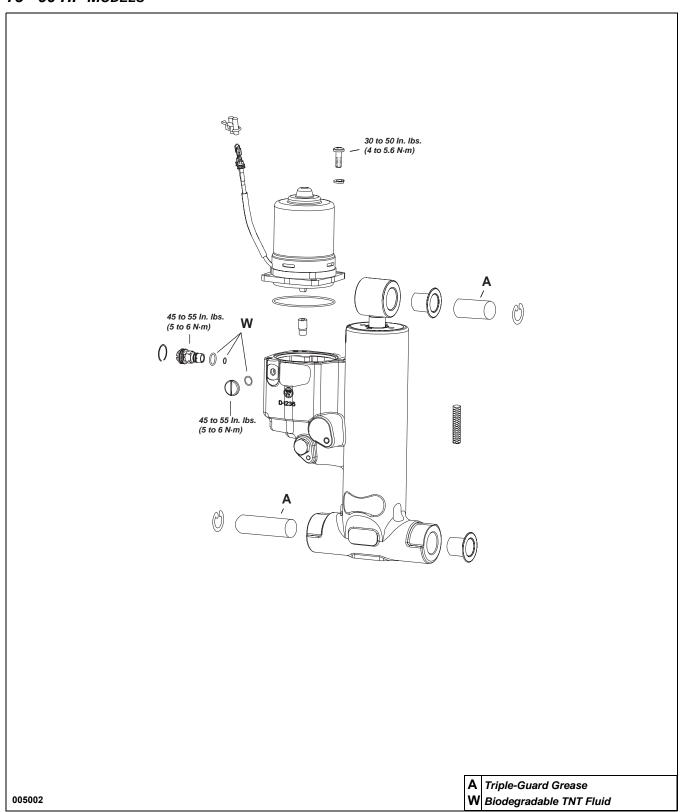

TRIM AND TILT

TABLE OF CONTENTS


SERVICE CHART	 	. 380
SYSTEM DESCRIPTION	 	. 382
MANUAL ADJUSTMENT	 	. 382
TRAILERING BRACKET AND TILT SUPPORT	 	. 382
ROUTINE INSPECTIONS	 	. 384
GENERAL	 	. 384
RESERVOIR FLUID	 	. 384
MANUAL RELEASE VALVE	 	. 384
STERN BRACKETS	 	. 384
TROUBLESHOOTING	 	. 384
ELECTRICAL CIRCUIT TESTS	 	. 385
RELAY TESTING	 	. 385
TRIM AND TILT MOTOR CURRENT DRAW TESTS	 	. 385
TRIM AND TILT MOTOR NO LOAD TEST	 	. 386
TRIM GAUGE TEST	 	. 386
TRIM SENDER TEST	 	. 387
TRIM AND TILT SERVICE	 	. 388
REMOVAL	 	. 388
DISASSEMBLY	 	. 390
ASSEMBLY	 	. 392
INSTALLATION	 	. 393
AD HISTMENTS		205

SERVICE CHART

40 - 60 HP MODELS

75 - 90 HP MODELS

SYSTEM DESCRIPTION

The power trim/tilt hydraulic system is completely contained between the outboard's stern brackets.

The system consists of:

- · Electric motor
- Oil reservoir
- · Pump manifold assembly
- Cylinder body assembly

Optimal boat and outboard performance can be achieved by adjusting (trimming) the angle of outboard propeller thrust. The first 15° of outboard movement is considered trim range.

Outboard movement beyond the trim range is considered tilting. Tilting of the outboard may be desired for shallow water drive and for trailering/storage. The tilt cylinder moves the outboard through the tilt range.

IMPORTANT: When in tilt range, make sure water is available to gearcase water pickups.

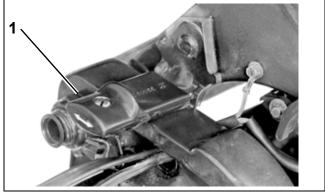

Manual Adjustment

The outboard can be manually raised or lowered through its entire trim and tilt range by opening the manual release valve a minimum of three turns. When this cycle is complete, the manual release valve must be closed and tightened to a torque of 45 to 55 in. lbs. (5 to 6 N·m) before normal operation can be resumed.

Manual release valve, 75-90 HP

001988

1. Manual release valve, 40-60 HP

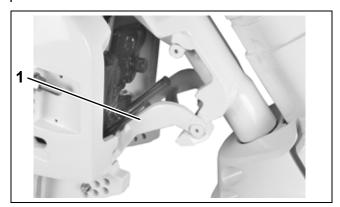

008018

Trailering Bracket And Tilt Support

40 - 60 HP MODELS

These outboards are equipped with combination tilt suppor/trailering brackets.

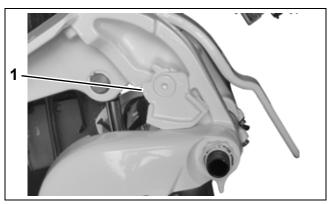
Tilt the outboard up fully, engage the bracket, then tilt the outboard down until the bracket is firmly in position.


1. Tilt support bracket, 40-60 HP

18954

75 - 90 HP MODELS

Use the trailering bracket to support the outboard when trailering in the tilted position. This bracket protects the hydraulic system from damage.


Tilt the outboard up fully, engage the bracket, then tilt the outboard down until the bracket is firmly in position.

Trailering Bracket

001987

For mooring or storing the boat with the outboard tilted, a tilt support is provided to support the outboard.

1. Tilt Support 002279

IMPORTANT: The tilt support must not be used to support the outboard while trailering.

ROUTINE INSPECTIONS

General

Check for external signs of fluid leakage. Correct causes as necessary.

Check the battery and make sure it is in good operating condition.

Reservoir Fluid

Check reservoir fluid level at least every three years or 300 operating hours. System capacity is approximately:

40 - 60 HP: 15.2 fl. oz. (450 ml)
75 - 90 HP: 21 fl. oz. (620 ml)

IMPORTANT: Use only *Evinrude/Johnson* Biodegradable TNT Fluid to fill the hydraulic system.

Refer to **Trim and Tilt** on p. 87 for filling procedure.

Manual Release Valve

Check the manual release valve with a torque wrench.

IMPORTANT: Tighten valve to a torque of 45 to 55 in. lbs. (5 to 6 N·m).

Stern Brackets

Inspect the stern brackets for binding.

Tighten starboard tilt tube nut to a torque of 45 to 50 ft. lbs. (61 to 68 N·m).

TROUBLESHOOTING

Use the following guidelines to check a single piston trim/tilt unit that is not working correctly.

Cylinder Leakdown:

- · Manual release valve seals
- External leaks

No reverse lock:

External leaks

No operation, motor runs:

- · Manual release valve open
- · Fluid level low
- Pump coupler
- Hydraulic pump

No tilt down:

- Manual release valve
- Fluid level

Slow performance:

- · Manual release valve
- Fluid level low
- Mechanical binding
- · Electric motor
- Hydraulic pump

Unit locked in tilt up:

- Mechanical binding
- Hydraulic pump

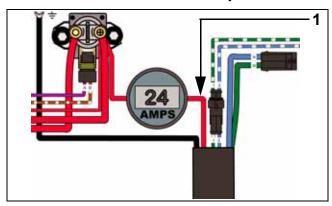
ELECTRICAL CIRCUIT TESTS

Relay Testing

When the trim-UP button is pressed, the UP relay is energized and connects the blue trim motor wire to the battery positive (+) terminal. The green trim motor wire remains grounded. When the button is released, the blue trim motor wire returns to a grounded position.

When the trim-DOWN button is pressed, the DOWN relay is energized and connects the green trim motor wire to the battery positive (+) terminal. The blue motor wire remains grounded. When the button is released, the green trim motor wire returns to a grounded position.

Refer to **TILT/TRIM RELAY TEST** on p. 150 for relay testing procedure.


Trim and Tilt Motor Current Draw Tests

Careful analysis of the electric motor's current draw and trim/tilt unit operating speed aids evaluation of the electric motor and certain mechanical components.

Use a battery rated at 360 CCA (50 Ah) or higher that is in good condition and fully charged to perform this test.

IMPORTANT: Specifications are for static hydraulic tests. DO NOT attempt to perform the following tests while the boat is moving.

Connect a 0 to 100 A DC ammeter in series between the battery side of the starter solenoid and the red lead to the trim/tilt relay module.

1. Red lead

005441

Observe ammeter and a stopwatch while running hydraulic unit through several complete cycles.

Compare test results to the values listed:

75 - 90 HP MODELS

Mode	Normal Current Draw	Time in Seconds	
Full Range UP	<30 A	12-18	
Full Range DOWN	<30 A	<18	
Stall	<40 A	_	

40 - 60 HP MODELS

Mode	Normal Current Draw	Time in Seconds
Stall UP	11 to 16 Amps	_
Stall DOWN	16 to 22 Amps	_
Full Range UP	_	13 to 19
Full Range DOWN	-	10 to 16

TRIM AND TILT

ELECTRICAL CIRCUIT TESTS

Test results include three basic possibilities:

A. Low current draw - Check for:

- Valves leaking
- Pump damaged
- · O-rings leaking
- Manual release valve damaged

B. High current draw – Check for:

- Valves sticking
- Pump binding
- · Motor binding
- Cylinder binding

C. Normal current draw, slow operating speed – Check for:

· Manual release valve damaged

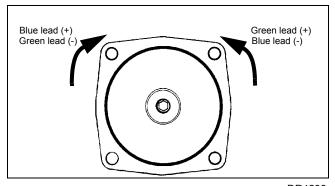
Trim and Tilt Motor No Load Test

IMPORTANT: Securely fasten motor in a suitable fixture before proceeding with this test.

Use a battery rated at 360 CCA (50 Ah) or higher that is in good condition and fully charged to perform this test.

Connect a 0 to 25 A ammeter in series with the battery positive (+) terminal, ammeter red lead toward terminal.

Attach or hold a vibration or mechanical tachometer to the motor while performing this test.

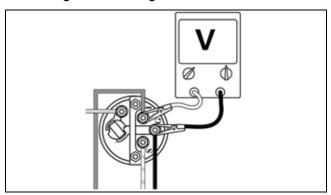

Monitor motor RPM and current draw.

30957

The motor shaft must rotate clockwise, as viewed from the pump end, when positive (+) is applied to the blue lead, and negative (-) is connected to green lead.

The motor shaft must rotate counterclockwise, as viewed from the pump end, when positive (+) is applied to the green lead, and negative (-) is applied to the blue lead.

DR4238r

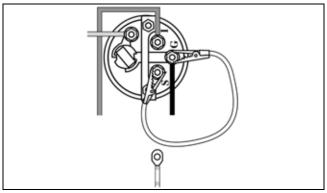

If test results vary, replace the motor.

Trim Gauge Test

STEP 1

Turn key switch ON. Using a voltmeter, check for voltage between the trim gauge "I" and "G" terminals.

- If no voltage, check condition of instrument harness, key switch, and engine 20 A fuse.
- If voltage is shown, go to STEP 2.



DRC6245

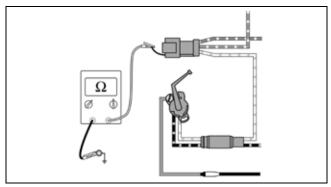
STEP 2

Remove the white/tan lead from the trim gauge "S" terminal. With key switch ON, gauge should indicate full-trim DOWN position. Now connect a jumper wire between terminals "S" and "G." Gauge should indicate full-trim UP position.

- If results are different, replace the trim gauge.
- If results agree, refer to Trim Sender Test.

DRC6246A

Trim Sender Test

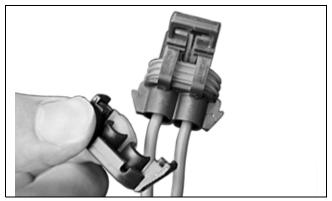

IMPORTANT: To avoid immediate meter damage, never apply an ohmmeter to an electrical circuit where voltage is present.

Disconnect the 3-pin connector between the instrument harness and engine trim harness. Connect an ohmmeter between the white/tan wire, terminal "C," of the engine harness and a clean engine ground.

With the outboard fully DOWN, meter must show a reading above 80 ohms.

With the outboard fully UP, meter must show a reading below 10 ohms.

- If results agree, refer to Trim Gauge Test on p. 386.
- If results are different, replace trim sender.


DRC6247

TRIM AND TILT SERVICE

Removal

Raise the outboard and engage the tilt support.

Remove the rubber grommet from the blue/green trim/tilt cable connector.

000686

Remove the terminals from the connector by using a suitable tool to depress the tab. While the tab is depressed, pull on the wire from the rear of the connector to release it from the connector.

000687


Separate the trim/tilt unit wires in the braided tube to permit removal through the hole in the stern bracket.

25078

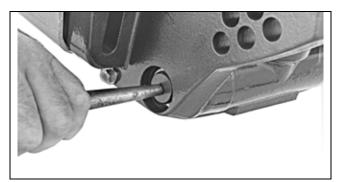
75 - 90 HP MODELS

Remove the external snap rings from the upper pin.

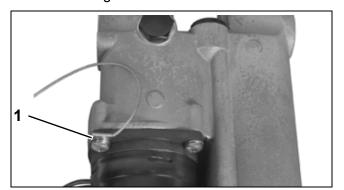
25064

Use a punch to remove the upper pin.

25065

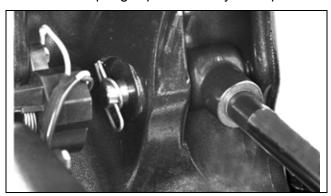

Retract the tilt cylinder rod.

Remove the external snap rings from the lower

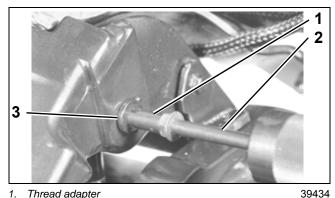

25077

Use a punch to remove the lower pin and remove the trim/tilt unit from the stern brackets.

25076


Remove the unit from the stern brackets far enough to remove the ground lead from the pump motor mounting screw.

1. Ground lead 002527


40 - 60 HP MODELS

Remove the spring clip from the cylinder pin.

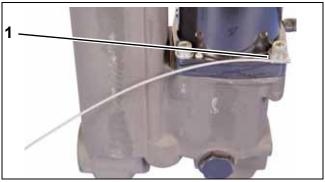
15493

Thread Adapter, P/N 340624, onto Slide Hammer, P/N 391008. Screw the adapter into the cylinder pin and remove the pin.

Thread adapter

- Slide hammer
- Cylinder pin

Remove one of the locknuts from the angle adjustment rod. Remove the rod from the stern brackets.



18941

TRIM AND TILT

TRIM AND TILT SERVICE

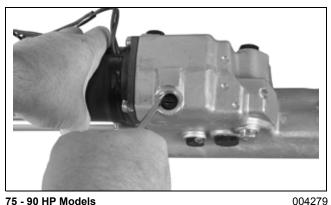
Remove the unit from the stern brackets far enough to remove the ground lead from the pump motor mounting screw.

1. Ground lead 007640

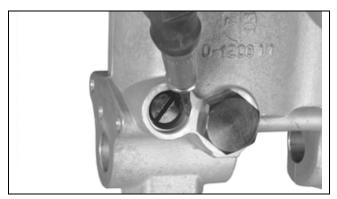
Disassembly

Thoroughly clean the unit before disassembling. Scrub all outside surfaces with a stiff brush and hot, soapy water to prevent surface dirt from contaminating internal parts.

Always use a lint free shop cloth when handling power trim/tilt components.

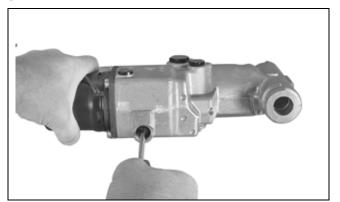

If painting the unit is required, paint it after it is completely assembled. Painting of individual components may cause flakes of paint to enter the hydraulic passages during assembly. Tape the trim/tilt piston rods before painting.

WARNING

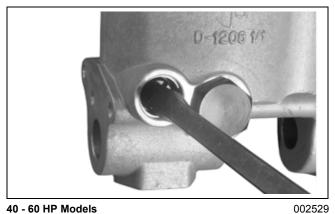

There may be high pressure behind some power trim valves. To avoid injury when removing manual release valve, be sure to cover valve with a shop cloth until the pressure is released. Wear safety glasses.

IMPORTANT: Before removing manual release valve, relieve pressure by fully extending cylinder.

Screw the manual release valve in. Remove the retaining ring using a small pick or screwdriver. Discard the retaining ring.



75 - 90 HP Models



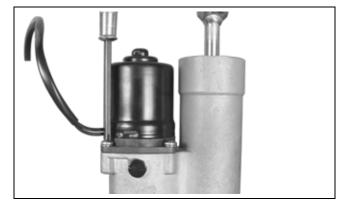
40 - 60 HP Models

Slowly remove the manual release valve. There may be pressure behind the valve-wear safety glasses.

75 - 90 HP Models 004285

40 - 60 HP Models

Inspect the manual release valve. Discard the Orings on the housing.



007108

Remove the four large motor flange retaining screws. Remove the motor and discard O-ring, screws, and washers.

004282 75 - 90 HP Models

40 - 60 HP Models 002531

Remove drive coupler from either the motor or the pump assembly.

002532

TRIM AND TILT

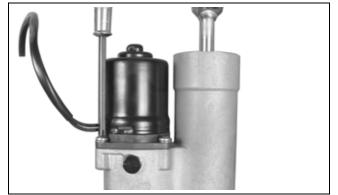
TRIM AND TILT SERVICE

Assembly

IMPORTANT: Use only *Evinrude/Johnson* Biodegradable TNT Fluid to fill the hydraulic system.

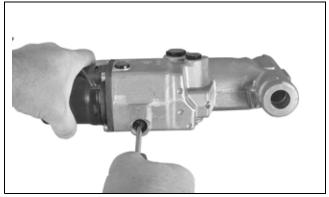
Install drive coupler in pump assembly.

Install a new motor O-ring.

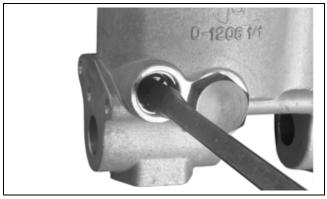


002533

Position the motor on the manifold and install four **new** screws and lock washers. Tighten the screws 35 to 50 in. lbs. (4 to 5.6 N·m).

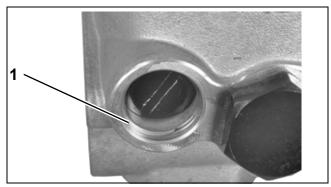


75 - 90 HP Models 004282


40 - 60 HP Models 002531

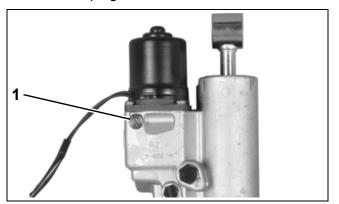
Oil O-rings and install them on the manual release valve. Oil and install the manual release valve. Tighten the valve to a torque of 45 to 55 in. lbs. (5 to 6 $N \cdot m$).

75 - 90 HP Models


004285

40 - 60 HP Models

002529


Install **new** retaining ring in groove.

1. Retaining ring

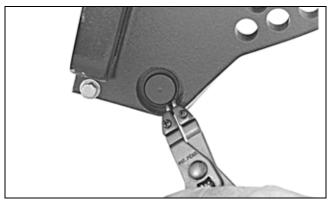
002534

Fill the oil reservoir up to the fill plug with *Evinrude/Johnson* Biodegradable TNT Fluid. Install the fill plug.

75 - 90 HP Models 004278

40 - 60 HP Models 007646

Run the motor, then recheck oil level. Cycle the unit several times and check the oil level when the cylinder is fully extended. Oil should be level with bottom of fill port. Install and tighten the fill plug to a torque of 45 to 55 in. lbs. (5 to 6 N·m).

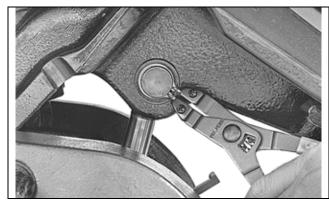

Installation

75 - 90 HP MODELS

Install the ground lead.

Place trim/tilt unit into position. Apply *Triple-Guard* grease to the lower pin and install the pin.

Install external snap rings on lower pin with sharp edge of ring facing out.



25077

Loosen the manual release valve if necessary and extend tilt cylinder rod to match with holes in swivel bracket.

Apply *Triple-Guard* grease to upper pin and install the pin.

Install external snap rings onto upper pin with sharp edge facing out.

25064

TRIM AND TILT

TRIM AND TILT SERVICE

40 - 60 HP MODELS

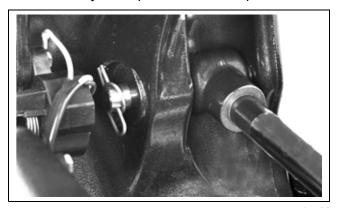
Lubricate the cylinder and thrust rod bushings with *Triple-Guard* grease. Install the bushings.

15591

Install the ground lead.

Place trim/tilt unit into position.

Lubricate the angle adjustment rod with *Triple-Guard* grease. Install the rod. Tighten the locknuts to a torque of 20 to 25 ft. lbs. (27 to 34 N·m).



18941

Loosen the manual release valve if necessary and extend tilt cylinder rod to match with holes in swivel bracket.

Apply *Triple-Guard* grease to upper pin and install the pin.

Secure the cylinder pin with cotter clip.

15493

ALL MODELS

Place trim/tilt wires in braided tube and install through hole in the stern bracket.

25079

Install connector on trim/tilt cable and reconnect trim connectors to engine wire harness.

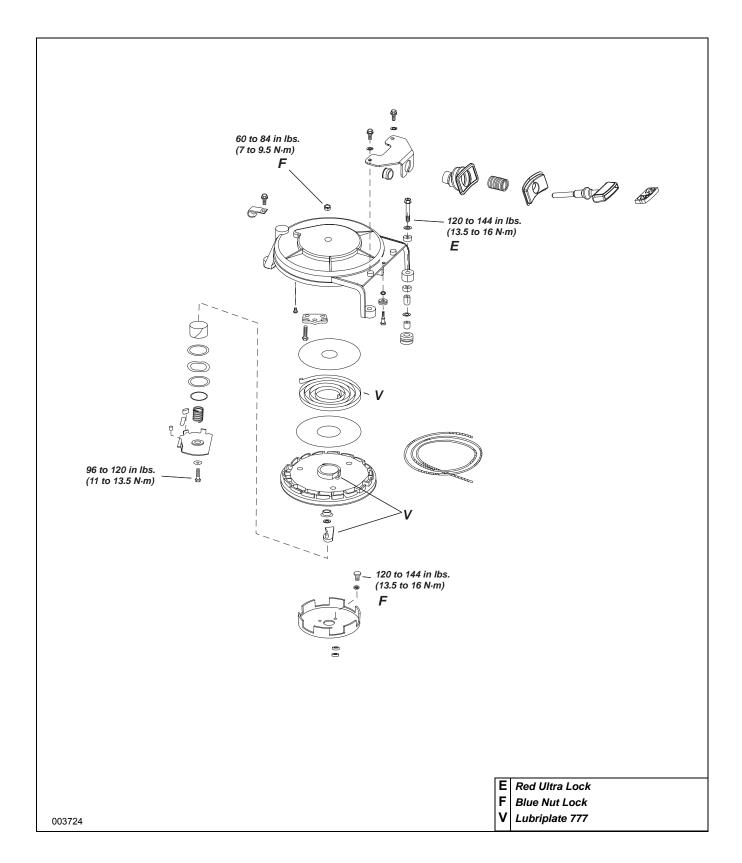
Release the tilt support and lower the outboard. Tighten the manual release valve to a torque of 45 to 55 in. lbs. (5 to 6 $N \cdot m$).

ADJUSTMENTS

Refer to Trim Sending Unit Adjustment (40 – 60 HP) on p. 75, or Trim Sending Unit Adjustment (75 – 90 HP) on p. 74.

Refer to **Tilt Limit Switch Adjustment (75 – 90 HP)** on p. 73.

NOTES

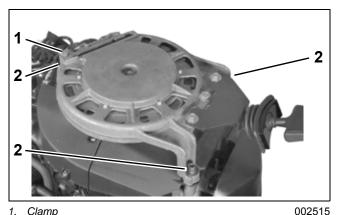

Technician's Notes Related Documents Bulletins Instruction Sheets Other

MANUAL STARTER

TABLE OF CONTENTS

SERVICE CHART	. 398
RECOIL STARTER REMOVAL	. 399
RECOIL STARTER DISASSEMBLY	. 399
RECOIL STARTER CLEANING AND INSPECTION	. 401
RECOIL STARTER ASSEMBLY	. 401
RECOIL STARTER INSTALLATION	. 405

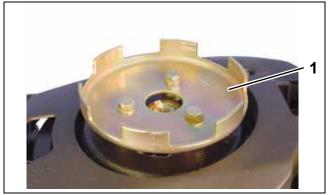
SERVICE CHART


RECOIL STARTER **REMOVAL**

WARNING

To prevent accidental starting while servicing, twist and remove all spark plug leads.

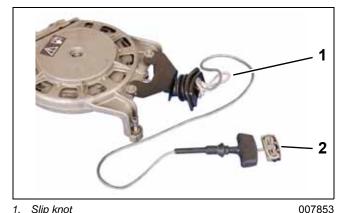
Remove the clamp holding the oiling system wiring harness.


Remove the three starter housing screws and washers.

- Clamp Starter housing screws (3)

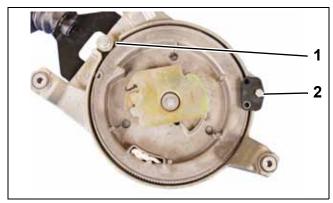
Lift starter housing from outboard.

Remove three screws and remove starter ratchet from flywheel.


Ratchet 006483

RECOIL STARTER **DISASSEMBLY**

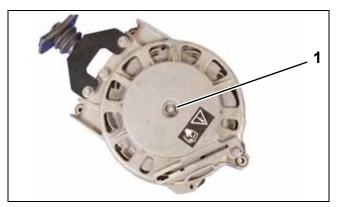
WARNING


Wear safety glasses while disassembling and assembling manual starters because of rewind spring tension.

Pull the starter rope out far enough to tie a slip knot in the rope. Remove the end of the starter rope from the handle anchor and remove the handle. Release the slip knot and ease the rope back in until the rewind spring is fully unwound. If necessary, remove the starter handle bracket from the starter housing.

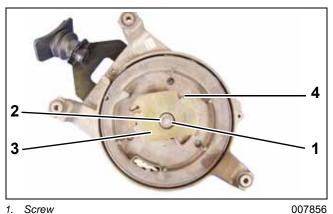
- Slip knot
- Rope anchor

Remove the rope guide and pulley support from the starter housing.

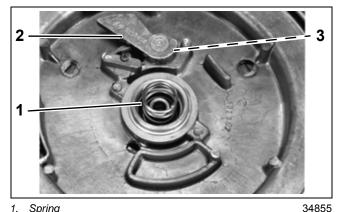

- 1. Rope guide
- 2. Pulley support

007854

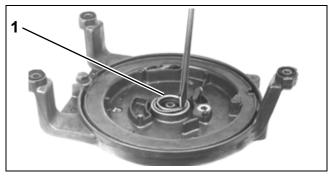
MANUAL STARTER


RECOIL STARTER DISASSEMBLY

Remove the nut from the starter pawl retaining screw.

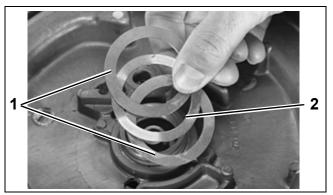

1. Nut 007855

Remove the starter pawl retaining screw, washer, and starter pawl plate with plate return spring from the starter assembly.


- Screw
- 2. Washer
- 3. Plate
- Spring

Remove starter housing spring and starter pawl with spring washer from the starter assembly.

- Spring
- Starter pawl
- Spring washer (under starter pawl)


Use a screwdriver to pry open the pulley lock ring, and remove ring from the starter.

1. Lock ring

COA1368

Remove the friction plates and friction plate spring washer.

- Friction plates
- Friction plate spring washer

34854

Hold the pulley in the starter housing while turning the starter over, legs down. Hold fingers clear of the pulley and jar the starter housing against a bench to dislodge the rewind spring and pulley. Remove the pulley bushing from the pulley.

007857

RECOIL STARTER CLEANING AND INSPECTION

Wash metal components in solvent and dry with compressed air.

Inspect the rewind spring for broken end loops and weak tension.

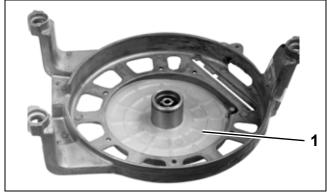
Examine the starter pawl for wear.

Inspect the starter components for wear. Replace as necessary.

Inspect starter rope. Replace rope if frayed. Cut new rope 96.5 in. (245 cm) in length. Fuse ends of rope to a length of 1/2 in. (12 mm).

Examine the pulley and the starter housing. Look for sharp edges and rough surfaces that could fray the starter rope. File and polish to remove.

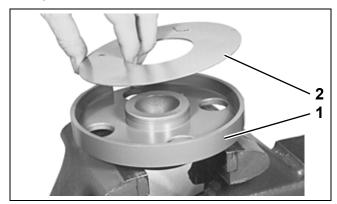
Examine the starter and starter lockout parts. Replace any worn or damaged parts.


RECOIL STARTER ASSEMBLY

A

WARNING

Wear safety glasses while disassembling and assembling manual starters because of rewind spring tension.

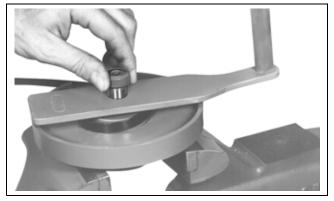

Place starter spring shield and pulley bushing into the starter housing.

1. Shield

COA1360

Clamp base of Starter Spring Winder and Installer, P/N 392093, in a vise. Insert release plate into spring winder base.

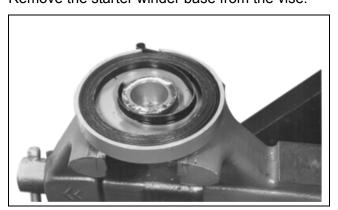
Base


2. Plate

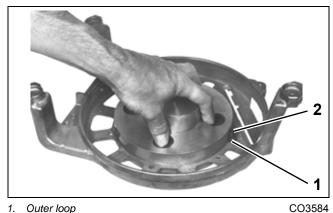
CO3593

MANUAL STARTER

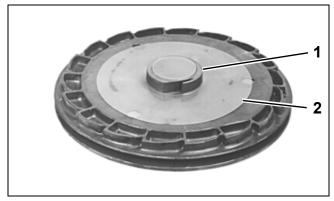
RECOIL STARTER ASSEMBLY


Apply *Triple-Guard* grease or *Lubriplate 777* to the rewind spring. Install the rewind spring into the spring winder base with open loop of spring facing inward. Insert the pin of the crank and pin assembly into the loop of the rewind spring. Secure the crank and pin assembly to the starter winder base with the crank retainer screw.

CO3591

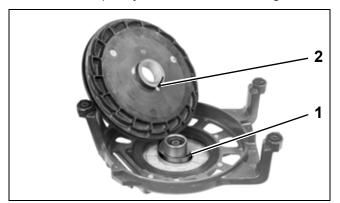

Rotate the crank and pin assembly in the direction shown on the tool. Wind the spring into the starter winder base until end of spring contacts the starter winder base.

Remove the crank retainer screw and the crank and pin assembly from the starter winder base. Remove the starter winder base from the vise.


CO3589

Install the rewind spring into the starter housing. Locate the outer loop of the rewind spring on the pin in the starter housing. Press down through the holes in the spring winder base to transfer the rewind spring into the starter housing.

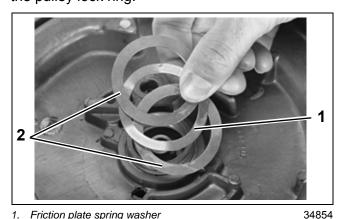
Outer loop


Apply *Triple-Guard* grease or *Lubriplate 777* to the pulley bushing. Install the pulley bushing in the pulley. Place the pulley shim on the pulley.

Bushing Shim

COA1364

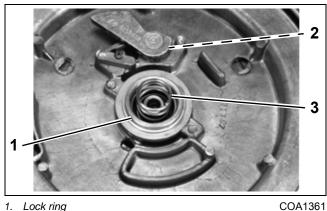
Bend the inside loop of the rewind spring in toward the center of the starter housing. Place the inner loop of the spring in the slot of the pulley, and install the pulley in the starter housing.



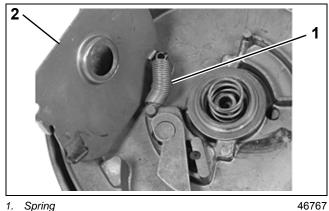
1. Inside loop

2. Slot

COA1365


Place the friction plate spring washer between the two friction plates on the pulley hub. Secure the friction plate and friction plate spring washer with the pulley lock ring.

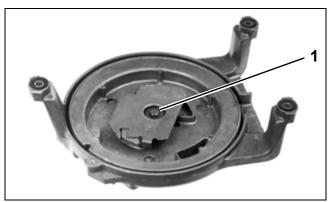
- Friction plate spring washer 1.
- Friction plates


Make sure the starter pawl bushing is installed in the pulley. Apply Triple-Guard grease or Lubriplate 777 to boss of the starter pawl. Place spring washer on the boss of the starter pawl. Place the starter pawl in the pulley.

Place the starter housing spring in the starter housing.

- 1. Lock ring
- Spring washer (under starter pawl) 2.

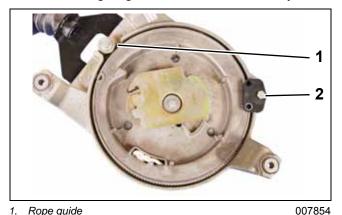
Install the starter pawl plate return spring on the starter pawl plate. Press the other end of spring on the boss of the pulley. Position the starter pawl plate on the pulley.


Spring

Clean threads of the starter pawl plate retaining screw and nut to remove adhesive.

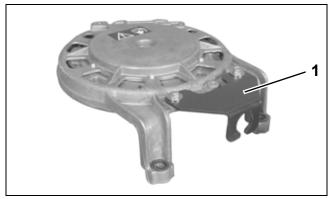
MANUAL STARTER

RECOIL STARTER ASSEMBLY


Install the starter pawl plate retaining screw and washer into the starter housing. Tighten screw to a torque of 96 to 120 in. lbs. (11 to 13.5 N·m).

1. Screw COA1375

Spray threads of starter pawl plate retaining screw and nut with Locquic Primer. Apply Nut Lock to the threads of the nut. Install and tighten the nut securely.

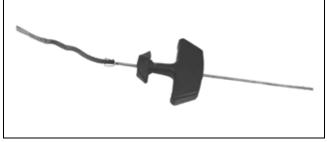

Install the rope guide and pulley support to the starter housing. Tighten the screws securely.

Rope guide

2. Pulley support

If removed, install the starter handle bracket to the starter housing. Tighten screws securely.

Starter handle bracket


002517

Tie a knot in one end of the starter rope. With the starter housing upside down on a bench, wind the pulley counterclockwise until the rewind spring is tight.

Back off the rewind spring until the rope cavity of the pulley is aligned with the rope guide. Thread the starter rope through the pulley, rope guide, and outlet in the starter handle bracket.

Seat the knotted end of the starter rope in the pulley. Tie a slip knot in the starter rope to hold rope in position.

Apply Triple-Guard grease or Lubriplate 777 to the handle end of the starter rope. Using Starter Rope Threading Tool, P/N 378774, thread the starter rope through the handle.

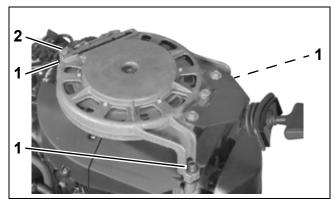
COA1373

Press the starter rope into the channel of the rope anchor, with end of starter rope firmly against end of channel. Press the anchor into the handle.

007858

Check operation of the starter pawl when the starter rope is pulled out. The starter pawl should extend when the starter rope is pulled and retract when the starter rope recoils.

RECOIL STARTER INSTALLATION


Apply *Nut Lock* to the threads of starter ratchet screws. Install washers and ratchet on flywheel. Tighten screws to a torque of 120 to 144 in. lbs. $(13.5 \text{ to } 16 \text{ N} \cdot \text{m})$.

006654

Place the starter assembly onto the outboard. Install the starter housing retaining screws, washers, and lock washers. Be sure to place washers between the starter housing and the flywheel cover. Apply *Ultra Lock* to threads and tighten the three starter housing screws to a torque of 120 to 144 in. lbs. (14 to 16 N·m).

Install clamp for oiling system wiring harness.

1. Starter housing screws (3)

2. Clamp

002515

NOTES

Technician's Notes	Related Documents	
	Bulletins	
	Instruction Sheets	
	Othor	
	Other	

SAFETY

TABLE OF CONTENTS

MARINE PRODUCTS AND THE SAFETY OF PEOPLE WHO USE THEM	. S-3
OUTBOARD SHIFT SYSTEMS AND SAFETY	. S-4
OUTBOARD SPEED CONTROL SYSTEM AND SAFETY	. S-5
OUTBOARD STEERING CONTROL SYSTEM AND SAFETY	. S-6
OUTBOARD FUEL, ELECTRICAL SYSTEM, AND SAFETY	. S-8
OUTBOARD MOUNTING SYSTEM AND SAFETY	S-11
OUTBOARD HYDRAULIC TILT/TRIM SHOCK ABSORPTION SYSTEM AND SAFETY	S-13
OUTBOARD EMERGENCY STOP SYSTEM AND SAFETY	S-14
SUMMING UP	S-16
MARINE PRODUCTS AND THE SAFETY OF PEOPLE WHO FIX THEM	S-17
HANDLING OUTBOARDS	S-17
HANDLING LEAD/ACID BATTERIES	S-21
GASOLINE – HANDLE WITH CARE	S-22
HAZARDOUS PRODUCTS	S-23
SAFETY AWARENESS TEST	S-24

MARINE PRODUCTS AND THE SAFETY OF PEOPLE WHO USE THEM

▲ WARNING

This Safety section contains information relevant to the safety of boaters and people that service boats. Please read this section carefully and share it with all shop technicians. Always follow common shop safety practices. If you have not had training related to common shop safety practices, you should do so not only to protect yourself, but also to protect the people around you.

It is impossible for this manual to cover every potentially hazardous situation you may encounter. However, your understanding and adherence to the recommendations contained in this manual and use of good judgment when servicing outboards will help promote safety. Always be alert and careful: a good foundation for safety.

Enjoyable boating is the goal of people who design and build marine products. To reach this goal, manufacturers are careful to make sure:

- · Product user is informed; and
- · Products are safe and reliable.

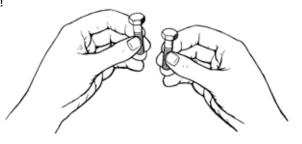
It is up to you, the people who...

- · Rig boats;
- Fix machinery; and
- Maintain equipment

...to keep the products safe **and** reliable.

This section talks about safe boating and how you can help make it safe. Some of these safety issues you will know, others you may not.

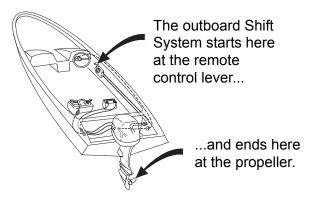
First!

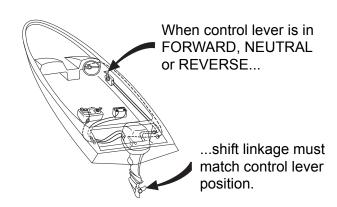

A word about parts... Plain parts; special parts; all parts!

DO NOT SUBSTITUTE PARTS

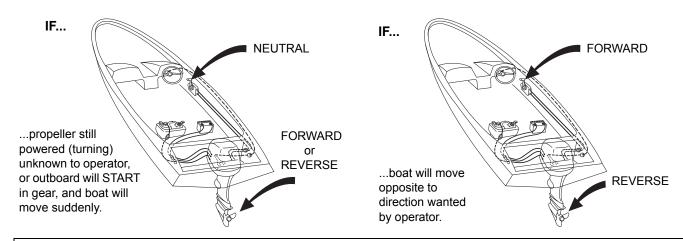
"They look the same, but are they the same?"

- · Same size?
- · Same strength?
- Same material?
- Same type?


Don't substitute unless **you know** they are the **same** in **all** characteristics.

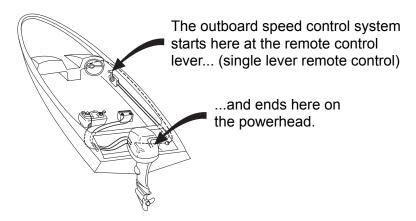

Second!

- Special locking bolts and nuts are often used to hold steering, shift, and throttle remote control
 cables to the outboard.
- When you take any outboard off a boat, keep track of special nuts and bolts. Do not mix with other parts. Store them on the outboard, then they are there when you need them.
- When the outboard is returned to the boat, use only the special nuts and bolts to hold remote steering, shift, and throttle cables to the outboard.

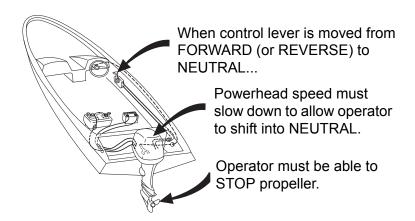

Outboard Shift Systems and Safety

What is most important?

What could happen?


How can loss of shift control be minimized?

Read, understand, and follow manufacturer's instructions


When rigging or after servicing

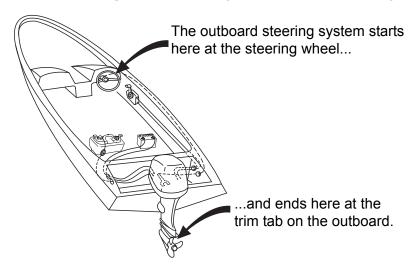
- Follow warnings marked "\(\tilde{\Lambda}\)" closely.
- Assemble parts carefully.
- Make adjustments carefully.
- Test your work. Do not guess. Make sure propeller does just what the operator wants and nothing else.
- Do not shift gears on a stopped outboard. Adjustments can be lost and parts weakened.

Outboard Speed Control System and Safety

What is most important?

What could happen?

If Operator cannot slow down the outboard or shift into NEUTRAL gear (stop propeller), Operator could panic and lose control of boat.

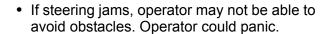

How can loss of speed control be minimized?

Read, understand, and follow manufacturer's instructions

When rigging or after servicing

- Follow warnings marked "\\" closely.
- Assemble parts carefully.
- Make adjustments carefully.
- Test your work. Do not guess. Make sure speed control system does just what the operator wants and nothing else.
- Make sure full throttle can be obtained so Operator will not overload parts.

Outboard Steering Control System and Safety


What is most important?

The steering system:

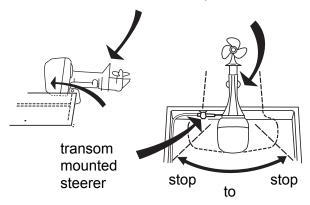
- · Must not come apart;
- Must not jam; and
- Must not be sloppy or loose.

What could happen?

 If steering system comes apart, boat might turn suddenly and circle. Persons thrown into the water could be hit.

 If steering is loose, boat may weave while operator tries to steer a straight course. With some rigs (at high speed), loose steering could lead to loss of boat control.

How can loss of steering control be minimized?

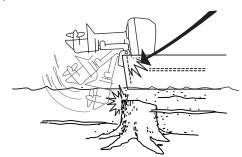

• Use a steering system recommended by the outboard manufacturer which meets Marine Industry Safety Standards (ABYC).

When rigging or after

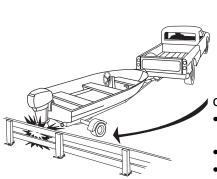
- Read, understand, and follow manufacturer's instructions
- Follow warnings marked "\(\tilde{\Lambda}\)" closely.
- Assemble parts carefully.
- Make adjustments carefully.
- Keep parts moving freely. Lubricate parts as shown in manual.
 - Use the bolts, nuts and washers supplied with steering attachment kits—they are a special locking type that will not loosen, rust, or weaken.

Transom Mounted Steering Systems – Check to Uncover Possible Trouble!

Tilt outboard into boat, then turn it.



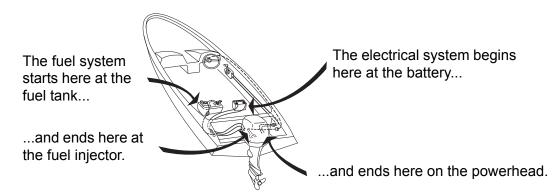
Be aware that raising or lowering outboard on transom can change a set-up which was OK earlier. If moved up or down even one-half inch. run test again to make sure steering parts are free and clear.


During this procedure, steering parts:

- Must not bind; and
- Must not touch other boat, outboard, or accessory parts in transom area.

Why? A hard blow to the outboard's gearcase can result in damage to steering parts.

Check for damaged parts. Blows to the outboard like this



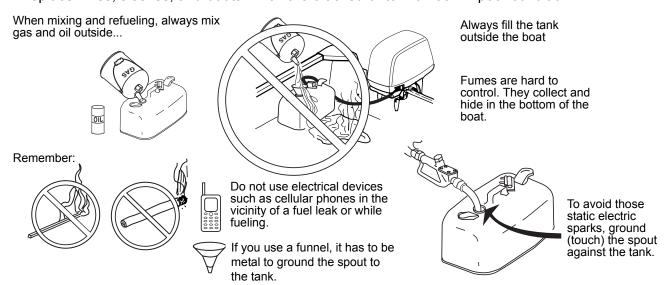
or this can put heavy loads on steering parts. Look for:

- Cracked parts, including steering parts, swivel brackets, and transom brackets:
- Bent parts; and
- Loose nuts and bolts.

Replace damaged parts. If weakened, parts could fail later on the water when least expected.

Outboard Fuel, Electrical System, and Safety

What is most important?

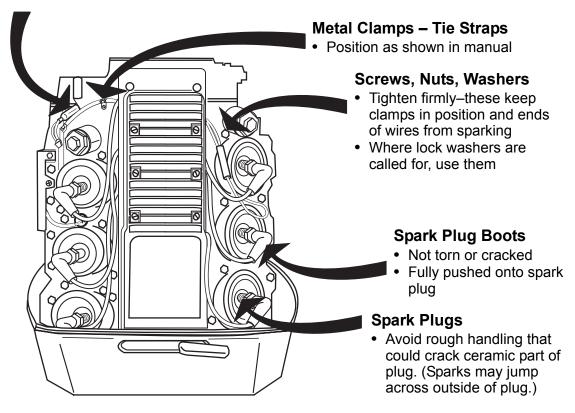

- · Fuel leakage must be eliminated.
- Stray electric sparks must be avoided.

What could happen?

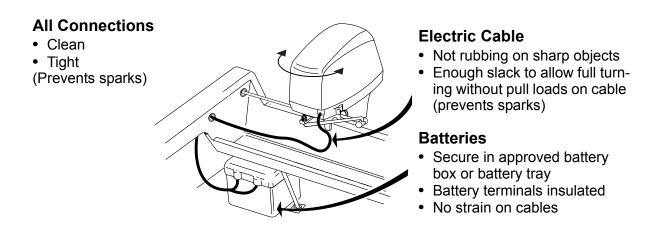
- When not boating, fuel leaking in car trunk or van, or place where portable tank is stored (basement or cottage), could be ignited by any open flame or spark (furnace pilot light, etc.).
- When boating, fuel leaking under the engine cover could be ignited by a damaged or deteriorated electrical part or loose wire connection making stray sparks.

How Can Fire and Explosion Be Minimized?

- Read, understand, and follow manufacturer's instructions
- Follow warnings marked "⚠" closely.
- **Do not** substitute fuel or electrical systems parts with other parts which may look the same. Some electrical parts, like starter motors, are of special design to prevent stray sparks outside their cases.
- Replace wires, sleeves, and boots which are cracked or torn or look in poor condition.

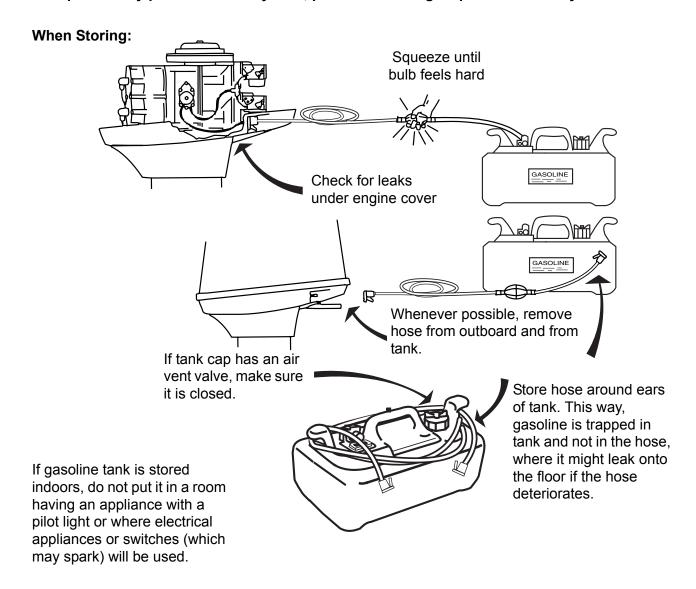

If electrical parts are replaced or even removed from the outboard, check the following:

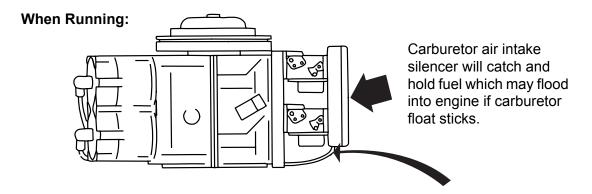
Wire and high voltage lead routing


- As shown in service manual
- Away from moving parts which could cut wires or wire insulation
- Away from engine cover latches which can catch and cut insulation from high voltage spark plug leads

Sleeves, boots, shields

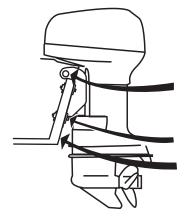
- In position (to avoid shock hazard)
- Not torn or cracked




In transom area:

SAFETY

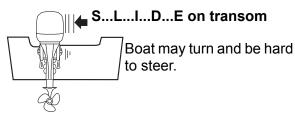
After repair on any part of the fuel system, pressure test engine portion of fuel system as shown:



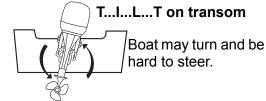
- Make sure silencer and its gaskets are on engine and drain hose is in place.
- · Air silencer mounting screws are special lock screws. Use only the special screws.

Outboard Mounting System and Safety

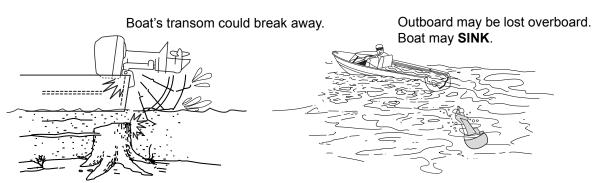
The mounting system includes:


- · outboard parts
- bolts, nuts, and washers
- · boat's transom

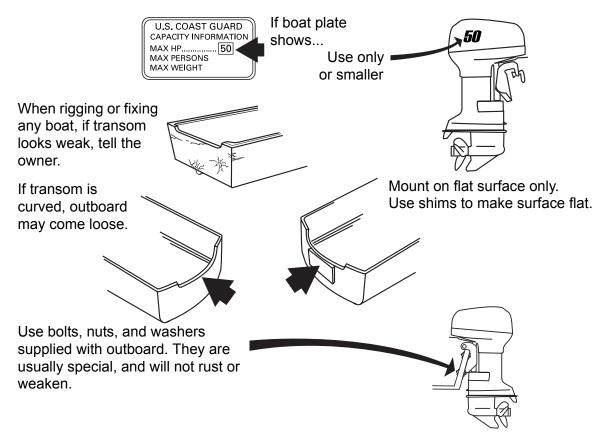
What is most important?


• Outboard must stay in position on boat's transom.

What could happen?


Outboard may

Outboard may


 If outboard hits something solid and does not stay on the transom, boat occupants may be injured from the outboard or its parts entering the boat.

How Can Loss of Mounting Be Minimized?

- · Read, understand, and follow manufacturer's instructions.
- Follow warnings marked "\(\Lambda \)" closely.

If weakened, parts could fail later on the water, when not expected

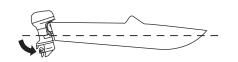


If owner tells you "I hit something really hard..."

Check for a high speed blow to the lower unit.

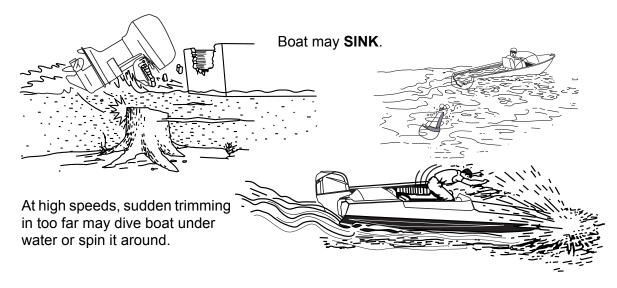
OR...

"I was backing up and I think the outboard may have hit a tree or something."

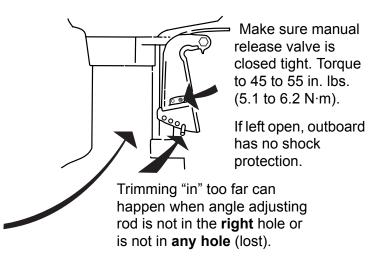

Check for a slow, heavy squash to the outboard.

 Look for damaged parts and loosened nuts and bolts in both the steering and mounting systems.
 Replace damaged parts.

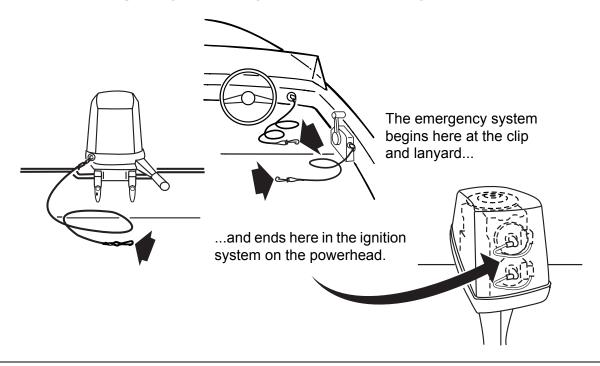
Outboard Hydraulic Tilt/Trim Shock Absorption System and Safety


What is most important?

- Shock absorption system must always be ready to absorb some blows to the lower parts of the outboard.
- Outboard must not trim in too far suddenly.

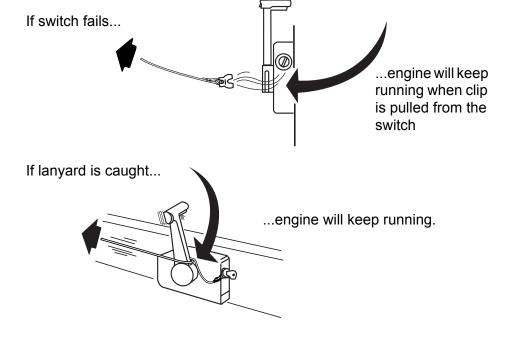

What can happen?

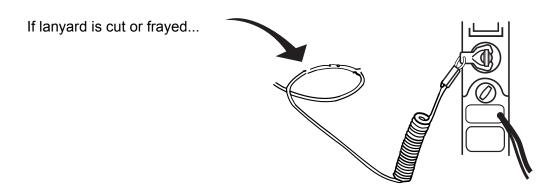
Without shock protection, a blow like this could cause serious damage to the outboard and injury to boat occupants from the outboard or its parts entering the boat. Transom could break away and outboard may be lost overboard.



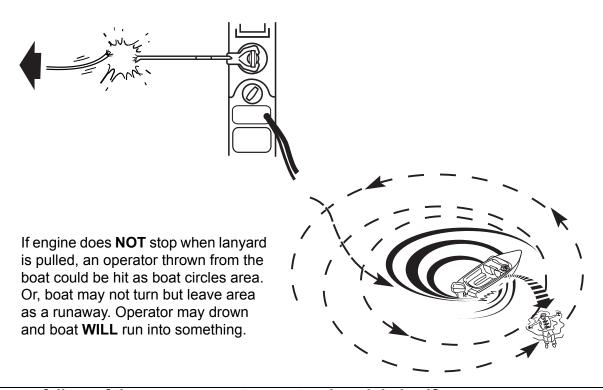
How can possible conditions be minimized?

- Read, understand, and follow manufacturer's instructions.
- Follow warnings marked "
 \underset{\underset}
- Test your work whenever possible.
- If oil leaks are seen in service areas, determine source.
 Keep reservoir filled.
- If outboard is hydraulic tilt/ trim model, always return rod to hole position determined by boat operator and make sure angle adjusting rod retain is in locked position.


Outboard Emergency Stop System and Safety


What is most important?

• The emergency stop system must **STOP** the engine when the clip is removed or the lanyard pulled from the emergency stop / key switch.


What could happen?

What could happen?

...lanyard or clip may break when pulled...

How can failure of the emergency stop system be minimized?

- Read, understand, and follow manufacturer's instructions
- Follow warnings marked "\(\underbrack \)" closely.

When or after

- Assemble parts carefully.
- rigging Inspect lanyard for cuts or fraying; clip for wear. Replace with original parts. Do not substitute.

- **servicing** Locate control box and other items in area to keep lanyard from being caught.
 - ALWAYS TEST EMERGENCY STOP SYSTEM. PULL LANYARD. ENGINE MUST STOP. IF IT DOES NOT, REPAIR BEFORE NEXT USE.

SAFETY

Summing up

Now you know some things that can take the joy out of boating.

No doubt about it—proper safety takes time!

- Reading and understanding instructions
- Re-reading warnings marked "A"
- Putting parts together correctly
- · Making correct adjustments
- Testing your work

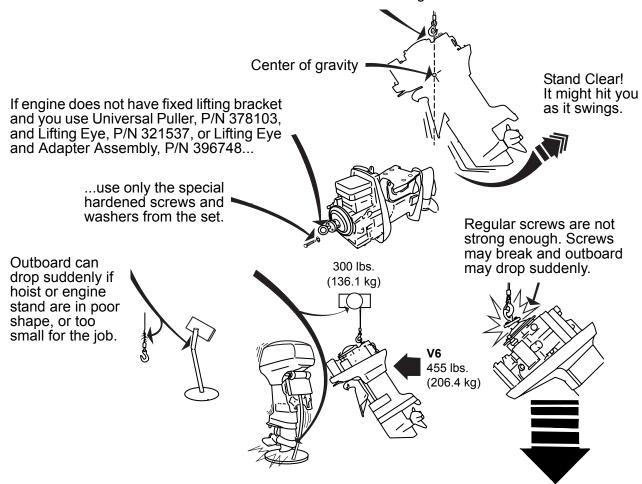
And making sure

- Worn or damaged parts are replaced
- Replaced parts are like originals in every way
- Customer is told of things which need attention

But, do you really want the alternative?

MARINE PRODUCTS AND THE SAFETY OF PEOPLE WHO FIX THEM

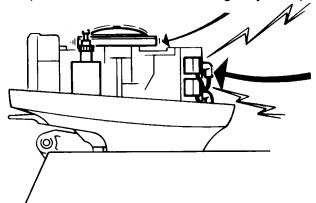
The first part of this Safety section talked about safe boating and how you, the technician, can help keep it safe for the boater. But what about you? Technicians can be hurt while:


- Rigging boats
- Troubleshooting problems
- Fixing components
- Testing their work

Some of these safety issues you will know, others you may not.

Handling Outboards

When lifting outboards


Some outboards have a fixed lift bracket bolted to the powerhead. Because outboard will want to hang like this when off the floor...

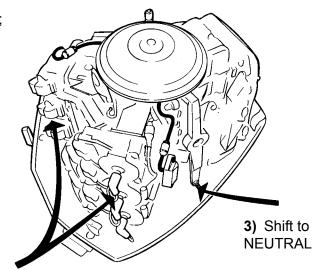
Make sure shop aids have extra capacity, and keep them in good repair.

Running outboard with engine cover removed

Engine cover is a guard. When you remove cover/guard to work on the outboard, remember: loose clothing (open shirt sleeves, neckties), hair, jewelry (rings, watches, bracelets), hands and arms can be caught by the spinning flywheel.

Handling high voltage parts like spark plugs and coils can shock you and may cause you to recoil into the rotating flywheel.

• Two people working together on a live outboard must look out for each other. Never, ever, use the key to start the outboard before signaling your partner. He may be leaning over the outboard with hands on the flywheel, handling a "hot" electrical part, or near the propeller.


Outboard starting at the wrong time

When you do things that turn the flywheel like:

- Off-season storage fogging (oiling) of outboard;
- · Removing propeller with a powered tool;
- · Electrical system checks;
- · Servicing the flywheel; or
- Any other actions ALWAYS...

2) Twist and remove ALL spark plug leads

Check prop shaft. Is outboard really in NEUTRAL?

NO SPARK

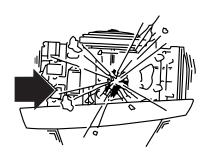
NO START

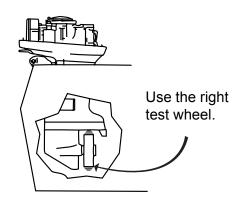
NO SURPRISES

Running outboard too fast (Overspeeding)

• "Too fast" means running faster than outboard normally runs on boat.

Running too fast can happen when:


1) Using a flushing device...


Turn on water before starting outboard. Keep engine speed below 2000 RPM. With no load, outboard will run too fast very easily. Wear eye protectors.

2) Running with the wrong test wheel...

This may happen if outboard runs too fast.

Running outboards: Exhaust fumes

$\mathbf{\Lambda}$

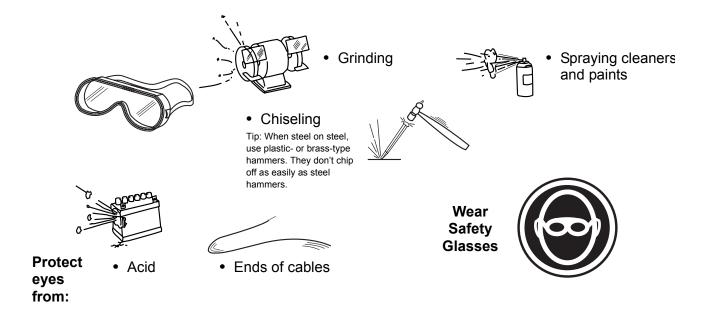
DANGER

DO NOT run the engine indoors or without adequate ventilation or permit exhaust fumes to accumulate in confined areas. Engine exhaust contains carbon monoxide which, if inhaled, can cause serious brain damage or death.

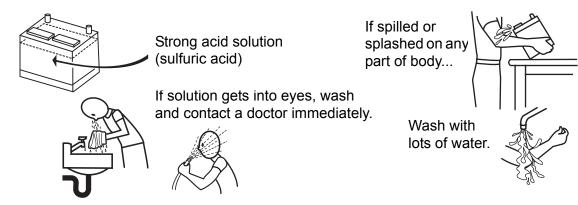
• Whenever running the engine, assure there is proper ventilation to avoid the accumulation of carbon monoxide (CO), which is odorless, colorless, and tasteless, and can lead to unconsciousness, brain damage, or death if inhaled in sufficient concentrations. CO accumulation can occur while docked, anchored, or underway, and in many confined areas such as the boat cabin, cockpit, swim platform, and heads. It can be worsened or caused by weather, mooring and operating conditions, and other boats. Avoid exhaust fumes from the engine or other boats, provide proper ventilation, shut off the engine when not needed, and be aware of the risk of backdrafting and conditions that create CO accumulation. In high concentrations, CO can be fatal within minutes. Lower concentrations are just as lethal over long periods of time.

SAFETY

Running outboards: Propellers

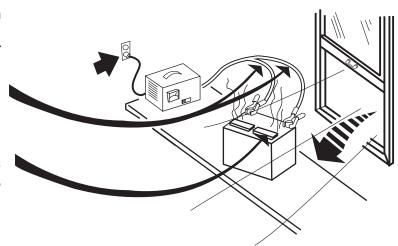


DANGER


Contact with a rotating propeller is likely to result in serious injury or death. Assure the engine and prop area is clear of people and objects before starting engine or operating boat. Do not allow anyone near a propeller, even when the engine is off. Blades can be sharp and the propeller can continue to turn even after the engine is off. Always shut off the engine when near people in the water.

Eye protection

Eyes need protection when:



Handling Lead/Acid Batteries

Charging lead acid batteries

- 1) Attach and remove these cables with charger UNPLUGGED from 110 V wall socket. (This prevents shocks if charger is defective.)
- **2)** Observe correct polarity when connecting these larger leads.
- 3) Always charge in a well ventilated area. Charging causes acid solution to give off hydrogen gas through the vents in the caps. **Make sure vents are open.** If clogged, pressure inside may build. Battery may EXPLODE.

Battery gas is explosive!

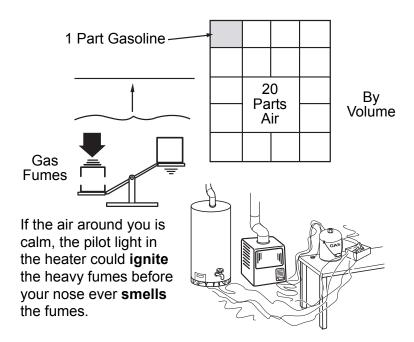
While charging or discharging, remember:

- No smoking
- No flames
- No sparks

DO NOT check battery charge by placing metal objects across posts. You will make sparks and serious burns are possible.

Never remove charger cables from battery posts. It is a sure way to make a lot of sparks in an area surrounded by battery gas.

After charging:


- Shut off charger
- Pull charger plug out of 110 V outlet
- Take charger cables off battery posts

Gasoline - Handle With Care!

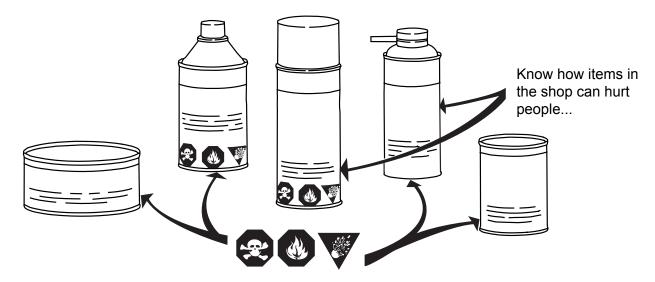
Gasoline vapor and air mixtures explode easily and violently when mixed as shown...

When you smell ANY odor of gasoline, explosion is possible.

Gasoline fumes are heavy and will sink to the lowest point in the boat or room and will STAY there, WAITING...

What can you do?

Store gasoline in sturdy, approved, sealed gas can and keep outside.


- Always store gasoline outside in a safe can (flame arrester and pressure relief valve in pour spout).
- Fill portable tanks outside of boat. Spillage will collect in bottom of boat.
- Use fuel as fuel ONLY, not for a cleaner or degreaser.
- If fumes are smelled in shop, basement, or garage, immediately:
 - Put out open flames, cigarettes, sparking devices;
 - Wipe up spill or leak;
 - Get towels and rags outside fast:
 - Open doors and windows; and
 - Check **lowest** area for fumes.

Be aware of items in and around repair area which can ignite fumes. Control them if fumes are smelled.

- Matches, cigarettes, blow torches, welders
- Electric motors (with unsealed cases)
- Electric generators (with unsealed cases)
- · Light switches
- Appliance pilot lights or electric ignitors (furnace, dryer, water heaters)
- · Loose wires on running outboards
- Other variables which may ignite fumes

How many of these are in your repair area?

Hazardous Products

READ

- "How and where to use"
- "How to give First Aid." Have recommended First Aid materials on hand should an emergency arise
- "How to dispose of can"

It's all on the back of the can or bottle label.

And remember: Little children are very curious and will try to taste everything so keep containers away from children!

SAFETY

Safety Awareness Test

The Technician's Safety Awareness Test....

- 1) Did you read this Safety section from page S-1 to page S-24?
- 2) Are you ready to take responsibility for the safe maintenance practices and procedures of your repair shop, co-workers, and technicians?
- 3) Do you understand all the safety precautions and instructions contained in this entire service manual?
- **4)** Will you follow all safety warnings, precautions, instructions and recommendations outlined in this service manual?
- 5) Do you understand that the service manual as a whole and this Safety section, in particular, contain essential information to help prevent personal injury and damage to equipment and your customers?
- 6) Have you received training related to common shop safety practices to protect yourself and others around you?
- 7) When replacement parts are required, will you use *Evinrude®/Johnson® Genuine Parts* or parts with equivalent characteristics, including type, strength and material?
- 8) Are you ready to follow the recommendations in this service manual before you service any boat or outboard?
- 9) Do you understand that safety-related accidents can be caused by carelessness, fatigue, overload, preoccupation, unfamiliarity of operator with the product, drugs and alcohol, just to name a few?

Abbreviations 6 Accessories Battery Cable, P/N 584348 110 Fuel Filter Assembly, P/N 174176 38 XD100 Outboard Oil Decal, P/N 352369 64 Adjustments Control Cable 57, 314, 324 Shift Linkage 258 Shift Rod 11, 13, 336, 359 Steering Friction 326 Throttle Friction 326 Tilt Limit Switch 73 Timing Pointer 157 TPS Calibration 158 Trim Sending Unit 74, 75	Requirements 11, 13, 33 Storage 92 Wiring Diagrams 36 Bearing Connecting Rod 247 Crankshaft 236, 237, 241, 242 Driveshaft 345, 370 Pinion Gear 341, 365 Propeller Shaft 346, 371, 372 Wrist Pin 235, 243 Break-In EMM Programming 65, 68, 203, 258 Gearcase 334, 353, 356, 378 Oiling 65 Procedure 68, 113
Trim Tab 76	Capacitor Test 127
Air Silencer 89	Clamp Screw 296
Air Temperature Sensor Connections 136	Connecting Rods
Description 103	Installation on Crankshaft 247
Resistance Test 140	Installation on Piston 243
Alternator Circuit Test 143	Orientation 243, 247
	Removal from Crankshaft 234
AMP Connector Servicing 161 Anodes	Removal from Piston 235
Anti-Corrosion 81	Tightening 247
	Control Cable
Continuity Check 81	Adjustments 57
Gearcase 337, 360	Installation 57
Propeller Shaft Bearing Housing 346, 371	Routing 29
Stern Bracket 290, 292, 295	Cooling System
B	Adapter Housing 215
	Components 214
Batteries Battery Charge Isolator 35	Cylinder Block Venting 216
Battery Switches 34	EMM and Vapor Separator Cooling 217
Cable Routing 41	Engine Temperature Check 218
Cables 33	Exhaust Housing 214
Charging System Tests 142	Flushing 82
Connections 88	Hose Routing and Water Flow 212
Installation 33	Operating Temperatures 11, 13, 68
Maintenance 88	Operation 217
Multiple Batteries 34	Pressure Relief Valve 215, 221
ואוטונוטוב שמנופווכט אין	

Thermostat 11, 13, 215 Diagnostic Procedures Overview 118 Fuel Injector Programming 114, 187 Thermostats 215, 220 Fuel Injector Tests 128 Turbulence 44 Vapor Separator 175 Fuel Pump Test 128 Water Intake Screens 82, 83, 341, 364, 374 *I-Command* settings 61 Water Pump 214, 334, 356 Idle Speed Control 114 Water Supply Tube 214, 286, 287 Oil Injector Test 204 Oil Priming 65, 208 Corrosion Oiling Rate 64, 65, 112 Anodes 81, 290, 292, 295, 337, 346, 360, 371 Cylinder walls 238 Reports 115 Long Term Storage 91 Sensor Monitoring 139 Metal components 81 Service Codes 111 Steering Cable 83 Static Ignition Test 125 Cover Service 96 Timing Verification 113, 158 Crankcase TPS Calibration 114, 158 **Driveshaft** Assembly 249 Disassembly 233 Installation 350, 376 Crankshaft Removal 339, 361 Assembly 241, 246 Service 363 Disassembly 235 Shimming 348, 373 Inspection 239 **Driveshaft Bearing Housing** 345, 370 **Crankshaft Position Sensor Dual-Outboard** Description 105 Alignment 77 Operation Test 124 Centerlines 46 *I-Command* settings 61 Resistance Test 139 **Cylinder Bore** Honing 238 Inspection 239 **Electrical Circuits** Cylinder Head EMM Pin Locations 136 Inspection 239 **Fuse 138** Installation 245 **Ground Circuits 138** Key Switch 146 Removal 234 Start Circuit 144 SystemCheck 151 **Deutsch Connector Servicing** 160 **Electrical Connectors Diagnostic Procedures** AMP Connectors 161 Dynamic Tests 120 Deutsch Connectors 160 Fuel Delivery Tests 128 Packard Connectors 163 **Ignition Tests 123 Electrical Harness** LED Indicators 121 Connections 58, 59 Strategy 118 **Emergency Stop Switch Diagnostic Software** Installation 28 Break-In Programming 65, 68, 203 Operation Check 67 Communication With Outboard 109 Test 149 Crankshaft Position Sensor 124 **Emissions Information** 7

Cylinder Drop Tests 120

EMM Fuel System 12 V Circuit Sensor 102 Additives 10, 12, 62 Connections 100, 101, 136 Components 174 Diagnostics 109, 118 Filter 38, 174, 184 Functions 100, 106 Fuel Circulation Pump 176, 180 Fuel Filter 88 LED Indicators 121 Fuel Lift Pump 174, 180, 182, 184 Sensors 102, 103 Service Codes 111 Fuel Manifolds 186 Fuel Requirements 62 Servicing 116 Software Replacement 115 Hose Routing 170 Timing Verification 158 Injector Servicing 114 TPS Calibration 158 Intake Manifold 189 Transfer 115 Minimum Octane 10, 12, 62 **Engine Monitor** Pressure Tests 178 Description 107 Priming 63 Low Oil Warning 104, 201, 206 Relieving Pressure 183 Requirements 37 No Oil Warning 201 Requirement 30 Troubleshooting 120, 128, 178 **Engine Temperature Check** 218 Vapor Separator 174, 185 **Fuse** 138 **Engine Temperature Sensor** Description 103 G____ Resistance Test 140 **Exhaust Housing** Gauges Assembly 287 see Information Display Systems 30 Cleaning and Inspection 287 Gearcase Installation 283, 285 Assembly 349, 374 Removal 281, 284 Disassembly 337, 360 Inspection 337, 360 **Exhaust Water Valve** Service 282 Installation 333, 355 Tests 130, 150 Leak Test 331 **Exterior Finish Protection 81** Lubricant 11, 13, 85 Removal 332, 354 **Grommet** 57 Flushing, Cooling System 82 H____ Flywheel Honing 238 Installation 155 Removal 154 Hoses **Fuel Filter** Fuel System 37, 41 Requirements 38 Grommet 57 **Fuel Injectors** Inspection 89 Crush Ring Replacement 187 Oil Distribution 206, 207 **Electrical Circuits 172** Oil Recirculation System 202 EMM Programming 187, 188 Routing, Cooling System 212 Routing, Fuel System 170 Installation 188 Removal 187

Tests 179, 180

Propeller Shaft 85 Swivel Bracket 84 **I-Command** Throttle and Shift Linkage 85 Outboard connections 59 Tiller handle 84 System settings 61 Tilt Tube 85 Water Pressure Gauge 61 **Trailering Bracket 84** Idle Speed 10, 106, 114 Trim and Tilt 87 Ignition Control Circuit Tests 127 M_____ Electrical Circuits 134, 135 **Maintenance Schedule 80** Ignition Coil Servicing 156 Manual Starter Ignition Coil Tests 127 Assembly 401 Required Systems 123 Installation 405 Running Tests 126 Rope Replacement 404 Static IgnitionTest 125 **Manual Tilt** Timing 113 Assembly 306 **Information Display Systems** Disassembly 303 **Engine Monitor 30** Models I-Command Displays 30 Included Models 9 SystemCheck Gauges 30 Model Designation 8 Tachometer Setting 67 **Serial Number Location 8 Intake Manifold Motor Mounts** Assembly 190 Lower Mount Servicing 281, 283, 284, 285 Disassembly 190 Upper Mount Servicing 253, 281, 283, 289, Inspection 190 291, 296 Installation 191 **Mounting the Engine** Removal 189 **Hull Preparation 44** Mounting Height 54 Muffler **Jack Plates** 45 Installation 257 Removal 230 Servicing 282 **Key Switch** Operation Check 67 Start Circuit 146 **New Engines** Fuel and Oil Priming 62 Outboard Rigging Procedure 56 LED Indicators 121 **Lower Cover** Installation 97 **Oetiker Clamp Servicing** 42 Removal 96 Oil Injector Lubrication Electrical Circuit (55 V) 201 Engine Oil 10, 12, 63

Electrical Tests 204

Functional Test 205

Gearcase 11, 13, 85

Power Trim 11, 13

Oiling Rate 64, 112, 203 Oiling System Components 200 Electrical Circuits 199 Engine Lubricant 10, 12, 63 Low Oil Switch 104 New Engine Set-Up 63 Oil Distribution 196 Oil Distribution Hoses 196, 206, 207 Oil Filters 88 Oil Recirculation 202 Oil Tank 200, 207 Oiling Rate 64, 112, 203 Priming 65, 203 Servicing 206 Tests 204 Outboard Excessive Smoking T-5 Outboard Starts and Stalls T-4 Outboard Starts, Low Maximum RPM T-5 Outboard Will Not Start T-1 Outboard Won't Shut Off T-4	Disassembly 231 Inspection 239 Installation 254 Removal 228 Predelivery Checks 66 Pre-Season Service 92 Pressure Relief Valve Assembly 222 Disassembly 221 Inspection 222 Priming Fuel System 63 Oiling System 203 Propeller Inspection 331 Installation 70 Selection 69 Propeller Shaft Installation 349, 374 Lubrication 85 Removal 340, 364 Propeller Shaft Bearing Housing Disassembly 346, 371 Installation 352, 377
P	Removal 338, 361
Packard Connector Servicing 163 Pinion Gear	R
Bearing Installation 341, 365	Relays
Bearing Removal 341, 365	Trim and Tilt 150, 385
Installation 350, 376	Remote Controls
Removal 339, 361	Cable Adjustment 57
Piston Rings	Cable routing 29
End Gap 240, 244	Installation 28
Installation 244	Selection 28
Removal 235	Rigging
Pistons Assembly 243	Boat 28 Outboard 56
Assembly 243 Inspection 240	Rope Replacement 404
Installation 244	RPM Limit 11, 13, 105, 106
Removal 234	11, 13, 103, 100
Powerhead	S
Assembly 241	S.A.F.E.
Cleaning 238	Description 108
Cylinder Compression Testing 228	Low Oil 104
	No Oil 201
	Temperature 102, 103

Safety S–1 Sensor Tests 139 Sensors Air Temperature Sensor 103, 140 Barometric Pressure Sensor 103 Crankshaft Position Sensor 105, 124, 139 EMM 102 Engine Temperature Sensor 103, 140, 220 Throttle Position Sensor 105, 139	Start-In-Gear Protection 67 Stator Resistance Test 141 Service 155 Voltage Output Test 141 Steering Handle Assembly 311, 319 Disassembly 310, 316 Inspection 311, 319
Service Charts Electrical and Ignition 132	Installation 313, 323 Removal 309, 315
Fuel System 166	Steering System
Shift Cable Adjustment, Tiller 324	Lubrication 83
Shift Housing	Requirements 52
Assembly 343, 368	Steering Arm and Shaft 289, 291, 295, 297
Installation 349, 374	Steering Friction 297, 326
Removal 340, 364	Steering Torque 76
Shift Linkage	Stern Bracket
Adjustment 258	Assembly 290, 294, 299
Installation 250	Disassembly 289, 291, 296
Lubrication 85	Manual Tilt 303
Removal 232	Removal 290, 291, 298
Shift Rod	Stop Circuit 149
Housing Installation 375	Storage 91
Shift Rod Adjustment 11, 13, 336, 359	Submerged Engines 93
Shimming, Driveshaft 348, 373	Swivel Bracket
Shutdown 108	Installation 295
No Oil 202	Lubrication 84
Spark Plugs	Manual Tilt 303
Gap 11, 90	Removal 292
Indexing 90	SystemCheck
Maintenance Schedule 80	Circuits 151
Recommendation 11, 13, 90	LOW OIL Warning Signal 201
Removal 90	NO OIL Warning Signal 201
Replacement 90	Outboard connections 58
Service 90	Tests 151, 152, 153
Special Tools 15	Winterization Procedure 91
Specifications 10	т
Starter	Tachamatan
Assembly 401	Tachometer
Circuit Description 144 Current Draw Test 147	Pulse Setting 67
Installation 159, 405	Technical Data 10
Removal 159	Temperature Operating 68, 218
Removal 139 Rope Replacement 404	Operating 68, 218 Operation below freezing 63
Solenoid Test 146	Sensors 103

Temperature Sender Service 220	Connector Service Tool, P/N 342667 160 Crankshaft Bearing/Sleeve Installer, P/N	
Thermostat	338647 241	
Assembly 221	Crimp Tool, AMP 161	
Description 215	Crimping Pliers, P/N 322696 160	
Disassembly 220	Diagnostic Interface Cable, P/N 437955	
Inspection 221	109	
Temperature 11, 13	Diagnostic Power Supply, P/N 587005 109,	
Throttle Cable Adjustment, Tiller 314, 325	124	
Throttle Linkage	Driveshaft Holding Socket, P/N 311875	
Installation 251	361, 377	
Lubrication 85	Driveshaft Holding Socket, P/N 334995	
Removal 232	339, 352	
Throttle Position Sensor	Driveshaft Puller, P/N 390706 362	
Description 105	Driveshaft Seal Protector, P/N 312403 348,	
Resistance Test 139	349, 351	
Tiller Adjustments	Driveshaft Seal Protector, P/N 318674 373,	
Steering Friction Adjustment 326	374, 376	
Tiller handle	Driveshaft Shimming Tool, P/N 5005925	
Lubrication 84	348, 373	
Tilt Limit Switch	Electrical Test Probe Kit, P/N 342677 143	
Adjustment 73	Flywheel Holder, P/N 771311 155	
Cam Installation 279, 280	Fue Pressure Gauge, P/N 5007100 178	
Tilt Support 382	Fuel Pressure Gauge, P/N 5006397 180	
Tilt Tube	Fuel Pressure Gauge, P/N 5007100 183	
Installation 280, 291	Gauging Head, P/N 352879 364	
Lubrication 85	Gearcase Alignment Gauge Kit, P/N	
Removal 279, 290	5006349 364	
Timing Adjustments	Guide Pins, P/N 383175 353	
Timing Verification 158	Injector Test Fitting Kit, P/N 5005844 179	
TPS Calibration 158	Key Switch Assembly, P/N 176408 110	
Timing Pointer Adjustment 157 Tools	Large Puller Jaws, P/N 432129 236, 345, 346, 370, 371	
Backing Plate, P/N 325867 340, 362	Lifting Fixture, P/N 396748 229, 230, 254,	
Ball Socket Installer tool, P/N 342225 314,	256	
325	Lower Driveshaft Puller, P/N 342681 362	
Ball Socket Remover tool, P/N 342226 189,	Oetiker Pincers, P/N 787145 43	
309, 315	Peak Reading Voltmeter, P/N 507972 142	
Battery Cable, P/N 584348 110 Pinion Bearing Remover and Insta		
Bearing Installation Tool, P/N 326562 347,	391257 341	
372	Pinion Bearing Remover/Installer, P/N	
Bearing Installation Tool, P/N 339750 372	5005927 341, 365	
Bearing Puller, P/N 432130 346	Pinion Nut Holder, P/N 334455 361, 377	
Bootstrap Tool, P/N 586551 115	Pinion Nut Starting Tool, P/N 320675 351	
Collar, P/N 328363 348	Pinion Nut Starting Tool, P/N 342216 376	
Collar, P/N 341440 373	Piston Stop Tool, P/N 342679 157	

Primary Lock Tool, P/N 777077 161	Torque Charts
Puller Bridge, P/N 432127 345, 346, 370,	see Service Charts
371	TPS Calibration 158
Puller, P/N 387206 340	Trailering Bracket 382
Retaining Ring Pliers, P/N 331045 338, 352	Lubrication 84
Rod Cap Alignment Fixture, P/N 396749	Trim and Tilt
247	Assembly 392
Seal Installation Tool, P/N 326551 347, 372	Disassembly 390
Seal Installation Tool, P/N 330268 370	Electrical Circuit Tests 150
Seal Installation Tool, P/N 336311 372	Inspection 384
Seal Installer, P/N 342665 345	Installation 393
Secondary Lock Installer, P/N 777079 161	Lubrication 87
Secondary Lock Tool, P/N 777078 161	Removal 388
Shim Gauge Bar, P/N 328366 348	Reservoir Fluid 11, 384
Shim Gauge Bar, P/N 328367 373	Troubleshooting 384, 385
Slide Hammer Adapter, P/N 340624 389	Trim Gauge Test 386
Slide Hammer Adaptor Kit, P/N 390898 187	Trim Sender
Slide Hammer, P/N 391008 187, 241, 362,	Adjustment 74, 75
389 Slide Hammer, D/N 432429 227, 280	Test 387
Slide Hammer, P/N 432128 236, 280	Trim Tab
Small Puller Jaws, P/N 432131 371	Adjustment 76
Starter Rope Threading Tool, P/N 378774 404	Removal 332, 354 Troubleshooting
Starter Winder/Installer Kit, P/N 392093	Charging System Tests 142
401	Cylinder Drop Tests 120
Stator Test Adaptor, P/N 5005799 141, 142	Diagnostic Procedures 118
Syringe, P/N 346936 206	Exhaust Water Valve 130
Temperature Gun, P/N 772018 218, 219	Fuel Control Adjustment 120
Terminal Release Tool, P/N 351413 162	Fuel System 128, 178
Thermal Joint Compound, P/N 322170 219	Ignition 123, 126
Tilt Tube Service Kit, P/N 434523 279	Oiling System 204
Torquing Socket, P/N 331638 234, 248	Sensors 139
Transom Drill Fixture, P/N 434367 47	Stator Resistance Test 141
Twist-Grip Remover, P/N 390767 310, 317	Strategy 119
Universal Puller Set, P/N 378103 155, 338,	Trim and Tilt 384, 385
361	
Universal Shift Rod Height Gauge, P/N	U
389997 336, 359	Upper Mount Servicing 253
Wrench Retainer, P/N 341438 361, 377	•
Wrist Pin Bearing Tool, P/N 336660 243	V
Wrist Pin Cone, P/N 318600, 244	Vapor Separator
Wrist Pin Pressing Tool, P/N 326356 235	Description 174
Wrist Pin Retaining Ring Driver, P/N	Installation 185
318599 244	Removal 185

W.

Water Intake Screens 82, 341, 364, 374

Inspection 83

Water Pressure Gauge 61

Water Pump

Assembly 335, 357

Description 214

Disassembly 334, 356

Inspection 334, 356

Water Tube 286, 287

Winterizing 91

Wrist Pin

Bearing 235

Installation 243

Removal 235

INDEX NOTES

NOTES

Technician's Notes	Related Docume	nts
	Bulletins	
	Instruction Sheets	Γ
	Other	

TROUBLE CHECK CHART

OUTBOARD WILL NOT START

OBSERVATION	POSSIBLE CAUSE	PROCEDURE
	Battery switch not ON	Check battery switch operation
	Discharged battery	Check battery, recharge or replace
	Battery cables and connections	Clean and tighten connections. Check for voltage drop in starter circuit.
Outboard does not	Faulty connection or ground, damaged electrical harness	Check all grounds, connections and wiring
turn over	Fuse (10 A)	Check wiring, then replace faulty fuse
	Wiring harness	Check for 12 V at terminal "B" of key switch
	Key switch	Check key switch operation
	Starter solenoid	Check wiring and test solenoid
	Starter or bendix/drive gears	Check starter, inspect bendix/drive gears
	Seized powerhead or gearcase	Check and repair as needed
	Discharged battery	Check battery, recharge or replace
Outboard turns slowly	Battery cables and connections	Clean and tighten connections. Check voltage drop in starter circuit.
	Powerhead hydro-locked	Check cylinders for water
	Partially seized powerhead or gearcase	Check and repair as needed
	Starter or bendix/drive gears	Check starter, inspect bendix/drive gears

OUTBOARD WILL NOT START

OBSERVATION	POSSIBLE CAUSE	PROCEDURE
	Stop circuit grounded	Check wiring and emergency stop switch. Check the safety lanyard is installed and stop circuit is not grounded.
	In gear–Tiller models	Make sure outboard is in neutral
	No Fuel	Check for fuel in fuel tank
	Water in fuel	Check fuel filter, sample fuel from fuel return manifold.
	Contaminated or poor fuel quality	Check or replace fuel supply
	Fuel supply restricted	Check primer, anti-siphon valve, and fuel pick-up. Use primer to fill vapor separator with fuel.
	Air in fuel system	Check for air in fuel supply manifold, refer to FUEL SYSTEM (vapor separator venting and fuel supply)
	,	Check fuel manifold pressure, refer to FUEL SYSTEM
	Incorrect, fouled, or worn spark plugs	Replace spark plugs
	Fuel injectors not working	Check voltage at injectors
Outboard turns over	Excessive fuel or oil, engine flooded	Check for leaking injectors, leaking fuel or oil lift pump, or leaking vapor separator vent, refer to FUEL SYSTEM
	Low or no 55 V alternator output	Check voltage on 55 V circuit, refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION
	Capacitor or 55 V circuit wiring	Check capacitor and 55 V circuits, refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION
	Ignition	Check ignition, refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION
	CPS input to <i>EMM</i> , no sync	Check RPM reading while cranking
	No ignition system control signal from <i>EMM</i> to ignition coils	Check cranking RPM (300 minimum), refer to SYSTEM ANALYSIS
	Low or no compression	Check compression
	Water in engine	Check condition of spark plugs and cylinders
	Internal powerhead damage	Check and repair as needed
	Leaking cylinder/crankcase, intake manifold, or reed valves	Check and repair as needed
	EMM program, timing, or operation	Check <i>EMM</i> program and timing; check injector information (by location and serial number)
	Neutral switch, tiller models	Check neutral switch operation

OUTBOARD HARD TO START

OBSERVATION	POSSIBLE CAUSE	PROCEDURE
	Weak battery	Check battery, recharge or replace
	Battery cables and connections	Clean and tighten connections, check voltage drop on high amperage circuit
	Starter or bendix/drive gears	Check starter, inspect bendix/drive gears
	Water in fuel system	Check water separator/fuel filter, sample fuel from fuel return manifold test port
	Contaminated or poor fuel quality	Check or replace fuel supply
	•	Check for air in fuel supply manifold, refer to FUEL SYSTEM (vapor separator venting and fuel supply)
	piugs	Replace spark plugs
	Low fuel pressure	Check pressure, refer to FUEL SYSTEM
	Fuel supply restricted	Check primer bulb, anti-siphon valve, and fuel pick-up, check for fuel system air leaks
starts, may or may not	Low or no alternator output (55 V)	Check voltage on 55 V circuit, refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION
run properly once started		Check capacitor and 55 V circuit (white/red), refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION
	Restricted or leaking fuel injector(s)	Check injectors, refer to FUEL SYSTEM
	Weak or erratic ignition operation	Check ignition, refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION
	Crankshaft Position Sensor (CPS)	Check CPS air gap and <i>EMM</i> LED indicators
		Check for leaking injectors, leaking fuel or oil lift pump, or leaking vapor separator vent. Refer to SYSTEM ANALYSIS .
	EMM program, timing, or operation	Check <i>EMM</i> program and timing; check injector coefficients; and monitor injector circuits and ignition primary outputs
	Internal powerhead damage	Check and repair as needed
	Leaking cylinder/crankcase, intake manifold, or reed valves	Check and repair as needed

- CONDOMINE WILLIAM STICE OF STI

OBSERVATION	POSSIBLE CAUSE	PROCEDURE
	Key switch or wire harness ground	Check key switch and ground to key switch, refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION
Outboard starts and runs, normal performance while	Stop circuit wiring	Check <i>EMM</i> LED indicators. Check wire harness (black/yellow) and key/stop switch(s).
running	EMM failure	Check <i>EMM</i> LED indicators and eliminate stop circuit as possible cause. Stop wire (black/yellow) has 4.0 VDC from <i>EMM</i> with key on or outboard running.

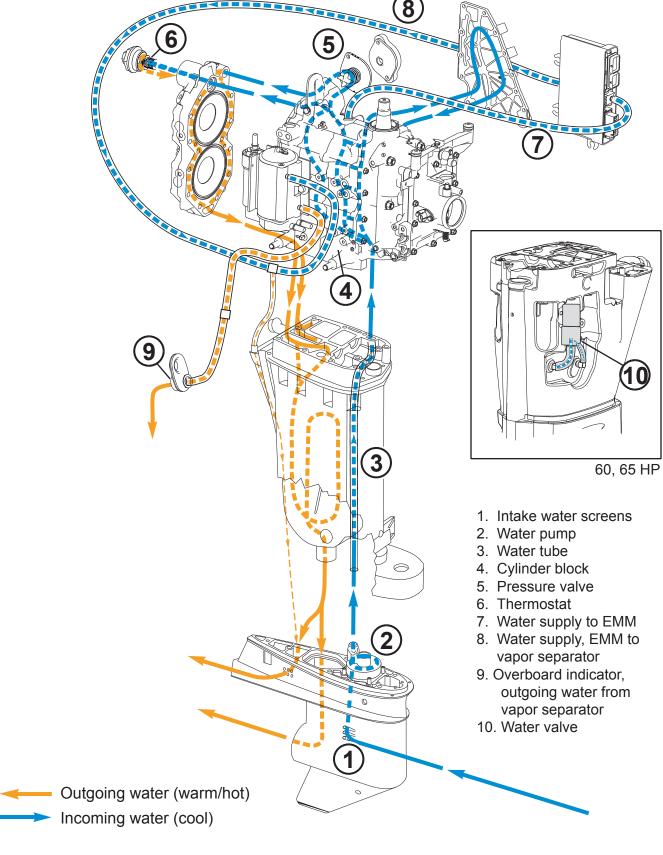
OUTBOARD STARTS AND STALLS

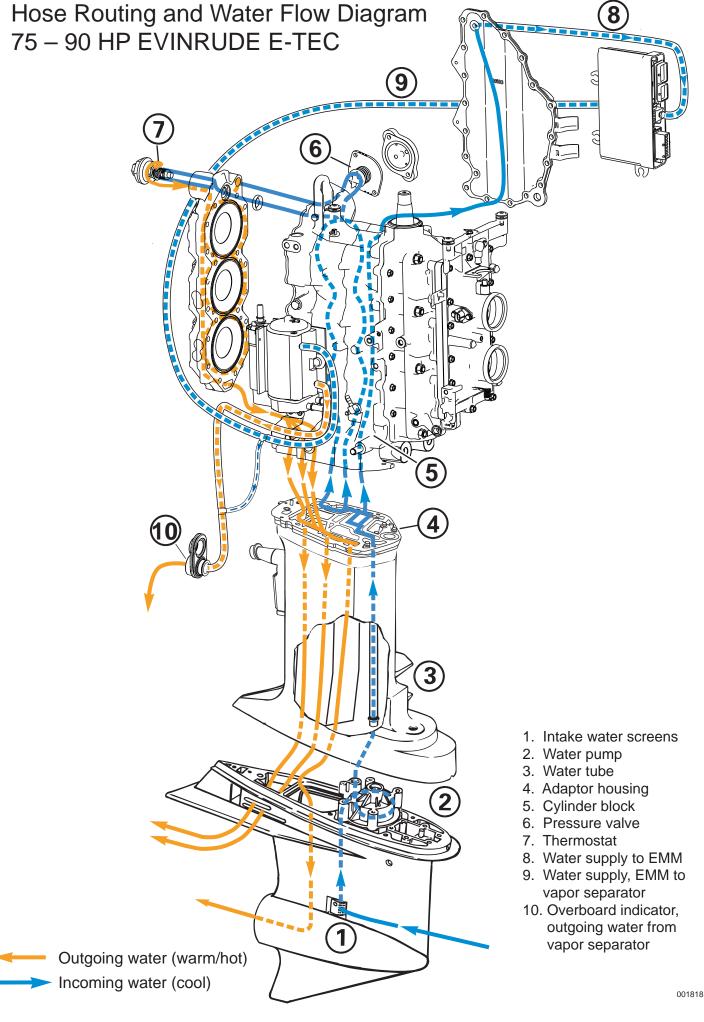
OUTBOARD WILL NOT SHUT OFF

OBSERVATION	POSSIBLE CAUSE	PROCEDURE
	Faulty wiring, connections, or grounds	Check all grounds, connections, and wiring
	Incorrect, fouled, or worn spark plugs	Replace spark plugs
	Low or no alternator output (55 V)	Check voltage on 55 V circuits, refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION
	Capacitor or 55 V circuit wiring	Check capacitor and 55 V circuit, refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION
	Contaminated or poor fuel quality	Check or replace fuel supply
	Low fuel pressure	Check pressure, refer to FUEL SYSTEM
Outboard may not run for more than a few seconds	Air in fuel system	Check for air in fuel supply manifold, refer to FUEL SYSTEM (vapor separator venting and fuel supply)
	Fuel supply restricted	Check primer bulb, anti-siphon valve, and fuel pick-up, check for fuel system air leaks
	Injector electrical circuit or control function	Check voltage at injectors, refer to SYSTEM ANALYSIS
	Restricted or leaking fuel injector(s)	Check injectors, refer to FUEL SYSTEM
	EMM program, timing, or operation	Check <i>EMM</i> program and timing; check injector coefficients; and monitor injector control wires and ignition primary outputs
	Weak or erratic ignition output	Check ignition, refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION
	Internal powerhead damage	Check and repair as needed

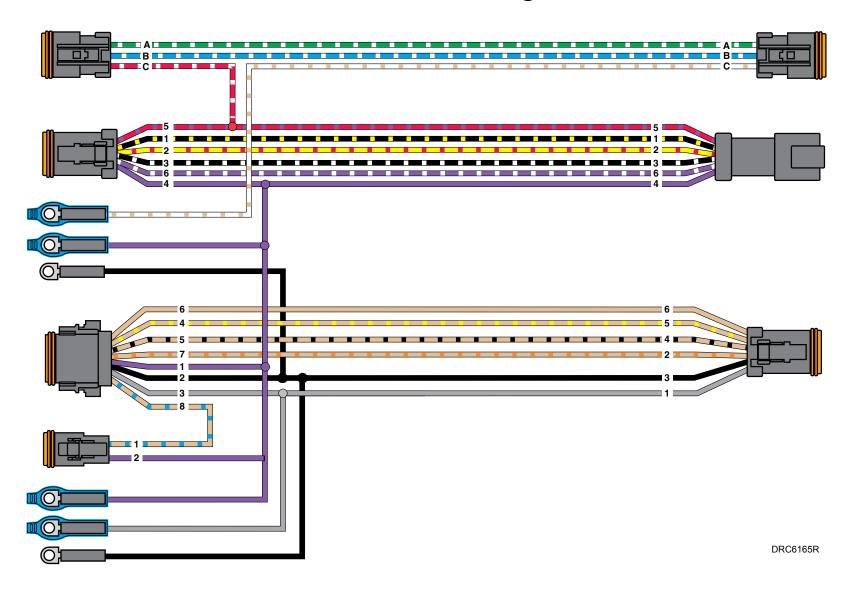
OUTBOARD STARTS, LOW MAXIMUM RPM

OBSERVATION	POSSIBLE CAUSE	PROCEDURE
SystemCheck light	Outboard is in S.A.F.E.	Check Service Codes and SystemCheck warning
Setup or rigging	Incorrect propeller	Refer to specifications, check recommended WOT RPM; water test and install correct pitch propeller
change	Incorrect outboard mounting height	Refer to installation guidelines
	Incorrect, fouled, or worn spark plugs	Replace spark plugs
	Contaminated or poor quality fuel	Check or replace fuel supply
	Fuel supply restricted	Check primer bulb, anti-siphon valve, and fuel pick-up, check for fuel system air leaks
	Low alternator output (55 V)	Check voltage on 55 V circuits, refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION
Performance of outboard at lower	Weak or erratic ignition operation	Check ignition, refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION
speeds appears normal	Fuel injector electrical circuit or control function	Check voltage at injectors, refer to SYSTEM ANALYSIS
	Restricted or leaking fuel injectors	Check injectors, refer to FUEL SYSTEM
	Low fuel pressure	Check circulation pump operation, refer to FUEL SYSTEM
	EMM programming, timing, or operation	Check <i>EMM</i> program and timing; check injector coefficients; and monitor injector circuits and ignition primary outputs
	Restricted engine exhaust	Check and repair as needed

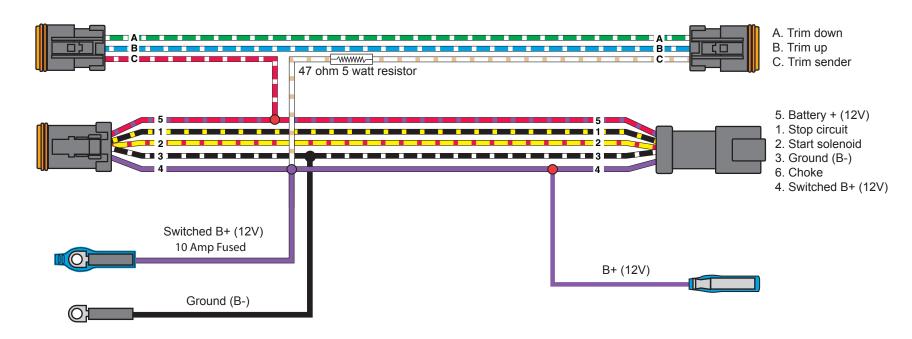

EXCESSIVE SMOKING

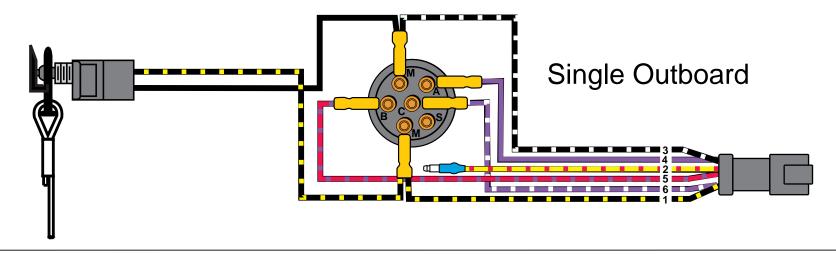

OBSERVATION	POSSIBLE CAUSE	PROCEDURE		
	Contaminated or poor fuel quality	Check or replace fuel supply		
	Excessive fuel or oil	Check fuel system for fuel supply air leaks or		
May coincide with	consumption	leaking fuel injectors		
increased oil	Outboard in break-in mode	Use diagnostics program to check		
consumption (normal if occurs after	Outboard mounted too low	Check installation height of outboard		
winterization)	Vapor separator vent	Check vapor separator assembly for proper venting/float valve operation		
	Faulty/leaking fuel injector(s)	Check injectors, refer to FUEL SYSTEM		
	Damaged fuel lift pump	Check for internal leaks		

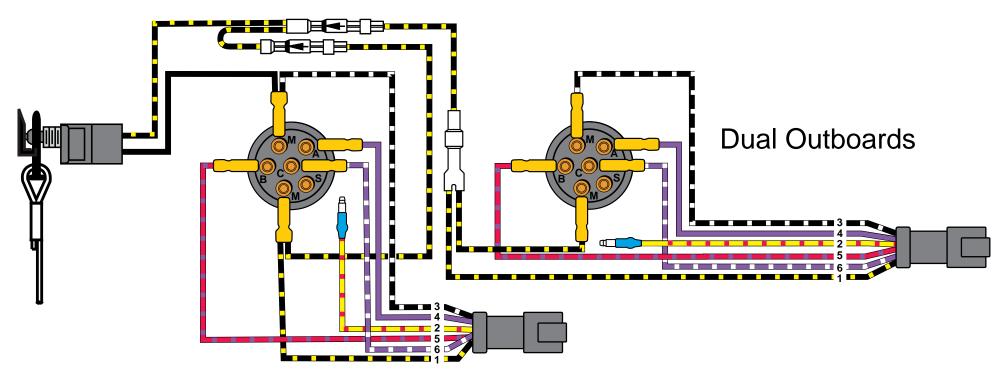
OUTBOARD SURGES, RUNS ROUGH


OBSERVATION	POSSIBLE CAUSE	PROCEDURE		
1200 RPM and above	S.A.F.E.	Access EMM fault codes		
	Incorrect, fouled, or worn spark plugs	Replace spark plugs		
		Check water separator/fuel filter, sample fuel fron fuel return manifold test port		
	Contaminated or poor fuel quality	Check and replace fuel supply		
	Low or erratic fuel pressure	Check pressure, refer to FUEL SYSTEM		
	1	Check for air in fuel supply manifold, refer to FUEL SYSTEM (vapor separator venting and fuel supply)		
	Fuel supply restricted	Check primer bulb, anti-siphon valve, and fuel pick-up, check for fuel system air leaks		
May be erratic or inconsistent	Restricted or leaking fuel injector(s)	Check injectors, refer to FUEL SYSTEM		
inconsistent	Faulty wiring, connections, grounds, or CPS air gap	Check all grounds, connections, and wiring. Check CPS air gap.		
	Low alternator output (55 V)	Check voltage on 55 V circuit, refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION		
	IONECATION	Check <i>EMM</i> program and timing; check injector coefficients; and monitor injector circuits and ignition primary outputs		
	Weak or erratic ignition operation	Check ignition, refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION		
	Capacitor or 55 V circuit wiring	Check capacitor and 55 V circuit (white/red), refer to SYSTEM ANALYSIS and ELECTRICAL AND IGNITION		
	Restricted engine exhaust	Check and repair as needed		
Audible noise	Internal powerhead damage	Check and repair as needed		
Muniple Holse	Damaged gearcase	Inspect gearcase and lubricate		

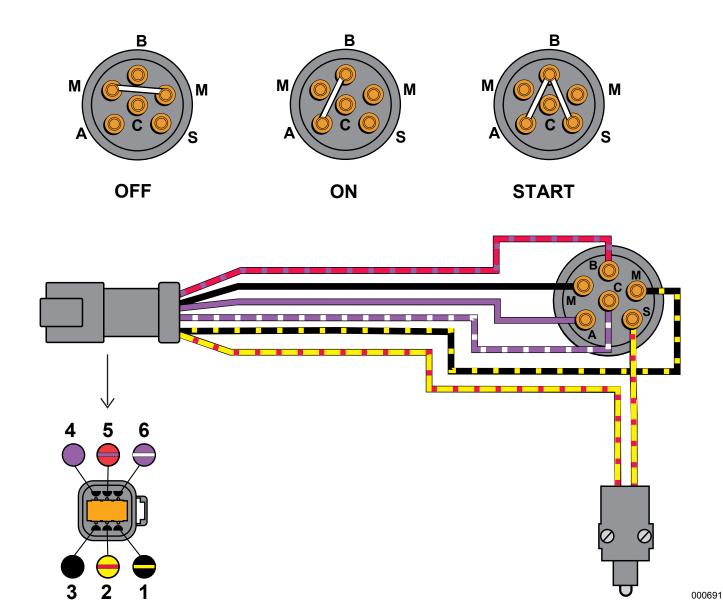
Hose Routing and Water Flow Diagram 40 – 65 E-TEC Inline 2 Cylinder



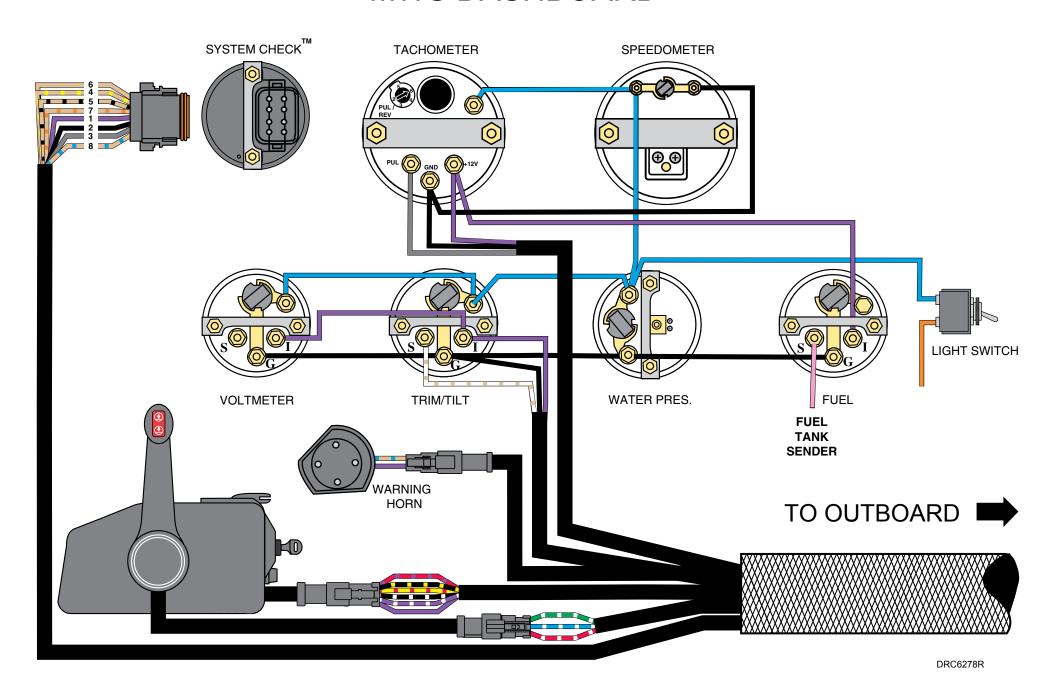

MWS Instrument Wiring Harness

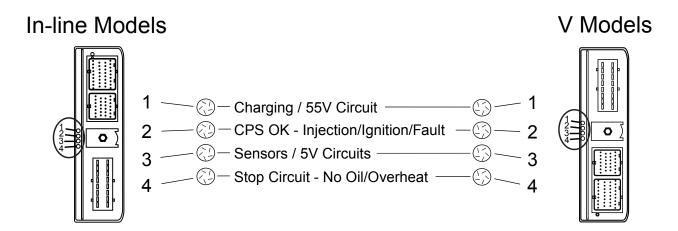


I-Command Keyswitch/TNT Wiring Harness

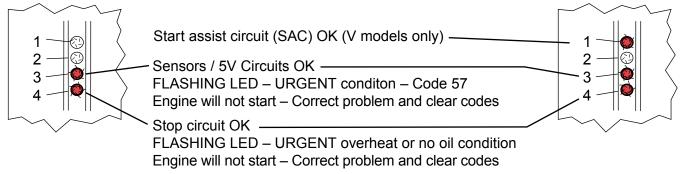


Lanyard Switch / Emergency Stop Circuits

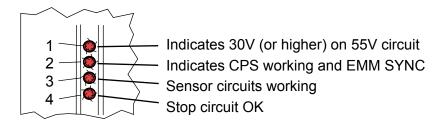



MWS Key Switch and Neutral Safety Switch

MWS DASHBOARD



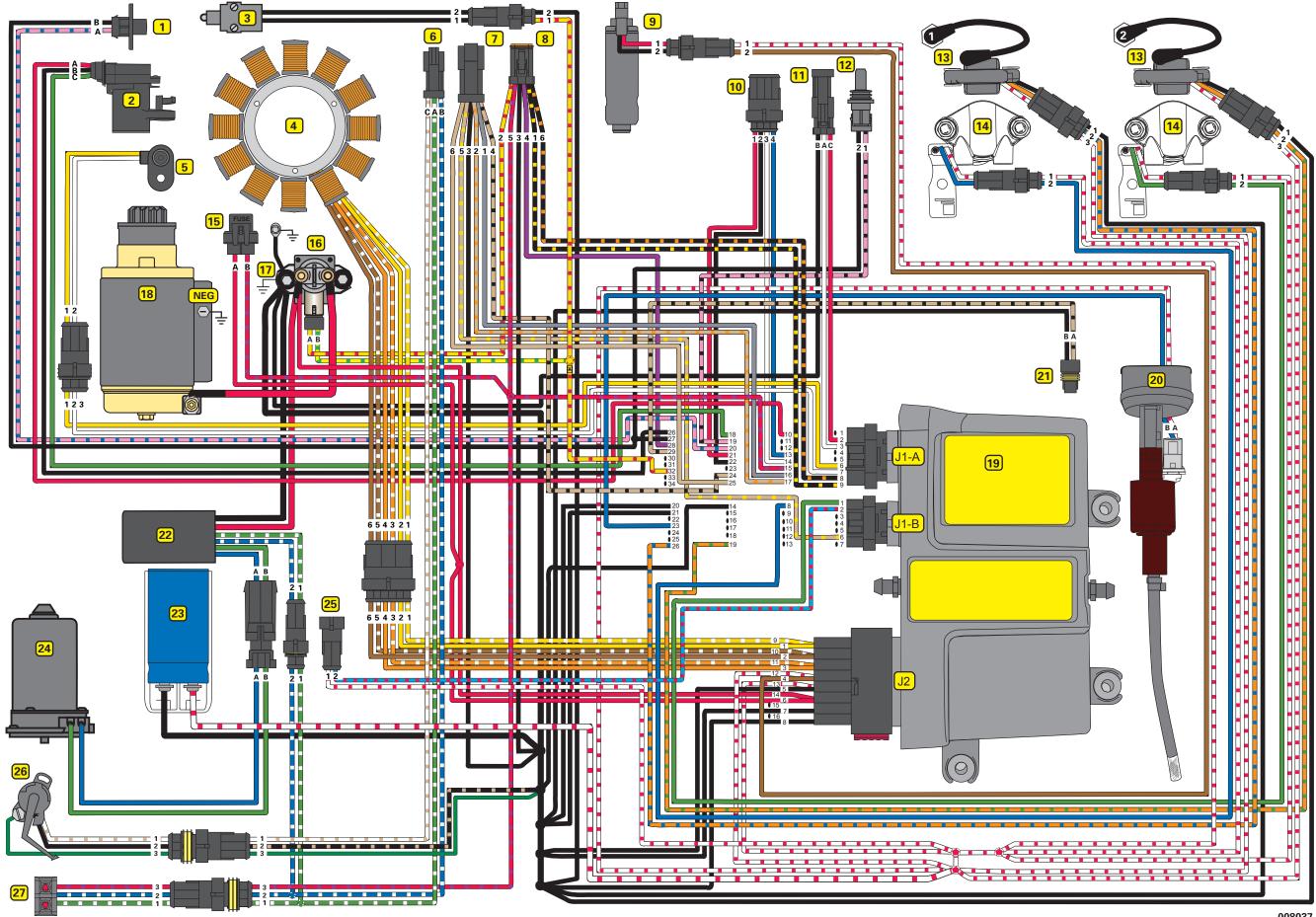
Evinrude E-TEC EMM LED Diagnostic Indicators


For more information, refer to **SYSTEM ANALYSIS** in the Service Manual.

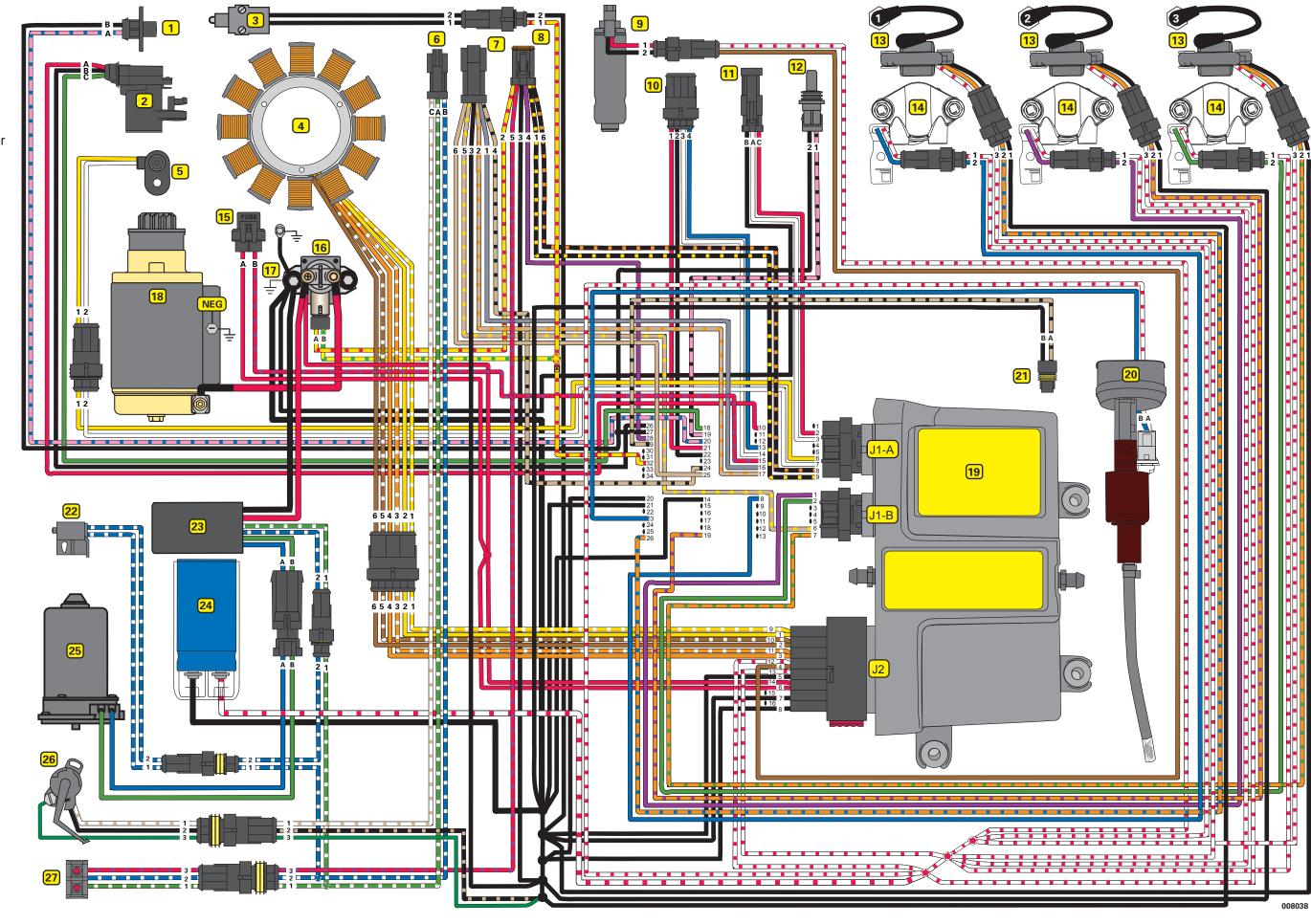
KEY ON: LED's illuminate to indicate circuit function

Note: No LED's ON indicates EMM not receiving battery voltage or Recoil Start model.

STARTING: LED's illuminate to indicate circuit function



RUNNING: LED's illuminate to indicate circuit fault


40 - 65 HP E-TEC

- 1. Air Temperature Sensor
- 2. Throttle Position Sensor
- 3. Neutral Switch
- 4. Stator
- 5. Crankshaft Position Sensor
- 6. Trim/Tilt Connector
- 7. SystemCheck Connector
- 8. Key Switch Connector
- 9. High Pressure Fuel Pump
- 10. CANbus Connector
- 11. Diagnostic Connector
- 12. Temperature Sensor
- 13. Ignition Coil
- 14. Fuel Injector
- 15. Fuse (10 Amp)
- 16. Starter Solenoid
- 17. Main Harness Ground
- 18. Electric Starter
- 19. EMM
- 20. Oil Injector
- 21. Low Oil Switch
- 22. Trim/Tilt Relay Module
- 23. Capacitor
- 24. Trim/Tilt Motor
- 25. Water Valve Connector
- 26. Trim Sending Unit
- 27. Trim/Tilt Switch

75 – 90 HP E-TEC

- 1. Air Temperature Sensor
- 2. Throttle Position Sensor
- 3. Neutral Switch
- 4. Stator
- 5. Crankshaft Position Sensor
- 6. Trim/Tilt Connector
- 7. SystemCheck Connector
- 8. Key Switch Connector9. High Pressure Fuel Pump
- 10. CANbus Connector
- 11. Diagnostic Connector
- 12. Temperature Sensor
- 13. Ignition Coil
- 14. Fuel Injector
- 15. Fuse (10 Amp)
- 16. Starter Solenoid
- 17. Main Harness Ground
- 18. Electric Starter
- 19. EMM
- 20. Oil Injector
- 21. Low Oil Switch
- 22. Tilt Limit Switch
- 23. Trim/Tilt Relay Module
- 24. Capacitor
- 25. Trim/Tilt Motor
- 26. Trim Sending Unit
- 27. Trim/Tilt Switch

EVINRUDE 40 – 90 HP EMM SERVICE CODE CHART

CODE	EMM CIRCUIT/SENSOR	INTERNAL	S.A.F.E	SHUT	EMM LED DISPLAY	DASHBOARD GAUGE WARNING DISPLAY	TIME TO ACTIVATE	SENSOR: CIRCUIT VOLTAGE / RESISTANCE (Ω) / INFORMATION
11	Throttle Position Sensor (TPS) out of idle range				-	-	2 seconds	TPS Voltage > 0.78 V with key ON (or cranking). Becomes stored fault when outboard starts. When both hard and stored faults are present, check for improperly adjusted throttle cable.
12	Throttle Position Sensor (TPS) circuit fault				LED 3: OFF (Cranking) / ON (Running)	CHECK ENGINE	0.8 seconds	TPS Voltage: < 0.14 V, or > 4.92 V. Engine limited to idle speed. Check sensor resistance—3000 to 7000 Ω (between pins A and B) & 4000 to 8000 Ω (between pins A and C)
13	TPS below range				LED 3: OFF (Cranking) / ON (Running)	CHECK ENGINE	8 seconds	TPS Voltage < 0.2 V. Check linkage and IDLE stop.
14	TPS above range				LED 3: OFF (Cranking) / ON (Running)	CHECK ENGINE	8 seconds	TPS Voltage > 4.85 V. Check linkage and WOT stop.
15	ROM (<i>EMM</i> program)	√			-	=	=	ROM "CHECKSUM" failure. Check software program number in EMM. Reload or replace with proper program.
16	Crankshaft Position Sensor (CPS) Intermittent loss of SYNC				LED 2: OFF (Cranking) LED 3: ON (Running)	-	10 instances	<i>EMM</i> counts losses of synchronization with crankshaft sensor. Check CPS mounting and resistance. Air gap range: 00.036 to 0.110 in. (1 to 2.8 mm), nominal 0.073 in. (1.85 mm) Resistance: 560 Ω ± 10% @ 77°F (25°C)
17	55 V circuit BELOW range	√	√		LED 1: ON (Running)	CHECK ENGINE	1 minute	System Voltage < 45 V. Engine limited to 1200 RPM. Perform stator/charging tests.
18	55 V circuit ABOVE range	✓	✓		LED 1: ON (Running)	CHECK ENGINE	1 minute	System Voltage > 57 V. Engine limited to 1200 RPM. Perform stator/charging tests. Check for loose connections in 55 V circuit. Check capacitor.
19	Start-in-gear				LED 3: OFF (Cranking)	CHECK ENGINE	=	Attempted engine start while in gear. Engine will not start.
	Winterization activated				All LEDs FLASHING	All Lights FLASHING	-	Engine is speed limited, and stops after 360 oil pulses. Refer to Maintenance or Operator's Guide.
	EMM Temperature Sensor circuit fault	\checkmark			LED 3: OFF (Cranking) / ON (Running)	-	8 seconds	<i>EMM</i> Temperature < -71° F (-57.4° C), or > 313° F (156° C).
	EMM Temperature BELOW range	\checkmark			LED 3: OFF (Cranking) / ON (Running)	-	8 seconds	EMM Temperature < -22 ° F (-30° C).
	EMM Temperature ABOVE range	\checkmark	\checkmark		LED 4: ON (Running)	WATER TEMP/HOT	8 seconds	EMM Temperature > 176°F (80°C). Engine limited to 1200 RPM. See Code 29.
	12 V circuit BELOW range	\checkmark			LED 1: ON (Running)	LOW BATTERY	5 minutes	Battery voltage < 12.5 V. Perform stator/charging tests.
27	12 V circuit ABOVE range	\checkmark			LED 1: ON (Running)	LOW BATTERY	5 minutes	Battery voltage > 15.5 V. Check battery connections and wiring.
29	EMM Temperature OVER range	\checkmark		✓	LED 4: FLASHING	WATER TEMP/HOT (FLASHING)	4 seconds	EMM Temperature > 212° F (100° C). Engine SHUTDOWN. Will NOT restart until EMM temperature returns to operating range. Check outboard and EMM cooling systems.
31	Engine temperature OVER range			√	LED 4: FLASHING	WATER TEMP/HOT (FLASHING)	8 seconds	2-Cylinder models: Engine Temperature > 248° F (120° C) 3-Cylinder models: Engine Temperature > 212° F (100° C) above 3500 RPM, or 3-Cylinder models: Engine Temperature > 230° F (110° C) below 3500 RPM Engine SHUTDOWN. Check cooling system. Check temperature sensor resistance—9000 to 11000 Ω @ 77°F (25°C).
	Critical NO OIL detected	\checkmark		\checkmark	LED 4: FLASHING	NO OIL (FLASHING)	3 hours	Outboard has run three hours with code 34 or 117. Engine SHUTDOWN. Will restart and run for 1 minute intervals.
	Oil injection pump circuit OPEN		\checkmark		LED 4: ON (Running)	NO OIL	4 seconds	Engine limited to 1200 RPM. Check oil injection pump circuit resistance—22 Ω .
40	Engine Temperature ABOVE range–Low speed		\checkmark		LED 4: ON (Running)	WATER TEMP/HOT	8 seconds	3-Cylinder models only. Engine Temperature > 212° F (100° C) below 3500 RPM. Engine limited to 1200 RPM.
	Engine Temperature Sensor circuit fault				LED 3: OFF (Cranking) / ON (Running)	-	8 seconds	Engine Temperature < -15° F (-26.2° C), or > 332° F (166.5° C). Check 5 V circuit and ground (NEG), and sensor resistance—9000 to 11000 Ω @ 77°F (25°C).
42	Engine Temperature BELOW range				LED 3: OFF (Cranking) / ON (Running)	-	8 seconds	Engine Temperature < -4° F (-20° C). Check engine temperature and sensor resistance.
43	Engine Temperature ABOVE range		√		LED 4: ON (Running)	WATER TEMP/HOT	8 seconds	2-Cylinder models: Engine Temperature > 212° F (100° C). 3-Cylinder models: Engine Temperature > 194° F (90° C) above 3500 RPM Engine limited to 1200 RPM. Check cooling system.
44	Barometric Pressure (BP) Sensor circuit fault	√			-	-	8 seconds	Pressure < 3.9 in. Hg (13.3 kPa), or > 35.1 in. Hg (119.0 kPa). Make sure <i>EMM</i> BP sensor tube is NOT plugged. Check atmospheric condition for comparison. Clear code and retest.
	BP Sensor BELOW range	\checkmark			-	-	8 seconds	Pressure < 20.7 in. Hg (70 kPa).
46	BP Sensor ABOVE range	\checkmark			-	-	8 seconds	Pressure > 31 in. Hg (105 kPa).

Rev 01/10

CODE	EMM CIRCUIT/SENSOR	INTERNAL	S.A.F.E	SHUT	EMM LED DISPLAY	DASHBOARD GAUGE WARNING DISPLAY	TIME TO ACTIVATE	SENSOR: CIRCUIT VOLTAGE / RESISTANCE (Ω) / INFORMATION	
47	Air Temperature (AT) circuit fault				LED 3: OFF (Cranking) / ON (Running)	CHECK ENGINE	8 seconds	Air temperature < -58° F (-49.9° C), or > 218° F (103.2° C). Check 5 V circuit and ground (NEG), and sensor resistance—9000 to 11000 Ω @ 77°F (25°C).	
48	Air Temperature BELOW range				LED 3: OFF (Cranking) / ON (Running)	-	8 seconds	Air temperature < -22° F (-30° C).	
49	Air Temperature ABOVE range				LED 3: OFF (Cranking) / ON (Running)	-	8 seconds	Air temperature > 158° F (70° C).	
51	Fuel injector circuit #1 OPEN				LED 2: ON (Running)	-	2 seconds		
52	Fuel injector circuit #2 OPEN				LED 2: ON (Running)	-	2 seconds	Check injector/circuit resistance—2 to 3 Ω @ 72°F (22°C).	
53	Fuel injector circuit #3 OPEN				LED 2: ON (Running)	-	2 seconds		
57	High RPM with low TPS setting	√		✓	LED 3: FLASHING	CHECK ENGINE (FLASHING)		TPS < 5% and RPM > 3000. Engine SHUTDOWN. Will NOT restart until code has been cleared. The problem could be caused by uncontrolled fuel entering the engine. DO NOT attempt to start the outboard until the problem has been found and repaired.	
58	Operating temperature not reached				LED 3: OFF (Cranking) / ON (Running)	-	10 minutes	Engine temperature < 104° F (40° C) with engine speed < 2300 RPM. Check thermostat and pressure relief valve.	
61	Fuel injector circuit #1 SHORTED				LED 2: ON (Running)	-	8 seconds		
62	Fuel injector circuit #2 SHORTED				LED 2: ON (Running)	=	8 seconds	Check injector/circuit resistance—2 to 3 Ω @ 72°F (22°C).	
63	Fuel injector circuit #3 SHORTED				LED 2: ON (Running)	-	8 seconds		
78	Sensor supply voltage fault	√			LED 3: OFF (Cranking) / ON (Running)	-	10 seconds	Sensor voltage < 4.75 V. Check sensors and related wiring. Check for pinched or chafed wiring.	
81	Ignition timing circuit #1 OPEN				LED 2: ON (Running)	=	10 instances		
82	Ignition timing circuit #2 OPEN				LED 2: ON (Running)	-	10 instances	EMM counts failed ignition events. Check wiring. Test with known good ignition coil.	
83	Ignition timing circuit #3 OPEN				LED 2: ON (Running)	-	10 instances		
90	Water injection solenoid SHORTED				LED 2: ON (Running)	-	8 seconds	Check circuit resistance—295 Ω ± 20 @ 77°F (25°C).	
91	Fuel pump circuit OPEN				LED 2: ON (Running)	-	8 seconds	Check pump/circuit resistance—2 to 3 Ω @ 77°F (25°C).	
93	Water injection solenoid OPEN				LED 2: ON (Running)	-	8 seconds	Check circuit resistance—295 Ω ± 20 @ 77°F (25°C).	
94	Fuel pump circuit SHORTED				LED 2: ON (Running)	=	2 seconds	Check pump/circuit resistance—2 to 3 Ω @ 77°F (25°C).	
101	Ignition timing circuit #1 SHORTED				LED 2: ON (Running)	=	20 instances		
102	Ignition timing circuit #2 SHORTED				LED 2: ON (Running)	-	20 instances	EMM counts failed ignition events. Check wiring. Test with known good ignition coil.	
103	Ignition timing circuit #3 SHORTED				LED 2: ON (Running)	-	20 instances		
117	Critical LOW OIL detected	✓	✓		LED 4: ON (Running)	INIC) CHI	4800 Pulses (2-Cyl) 6000 Pulses (3-Cyl)	EMM counts oil pump pulses after LOW OIL switch closes. Engine limited to 1200 RPM. Stop outboard and add oil to tank. Warning resets after three oil pump pulses.	
NOTE	: Always note service codes before clearing co	des. Cl	lear st	ored co	odes using diagnostic software. Clearing s	ome codes requires tu	rning EMM "OFF" an	d then "ON" again.	

